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Abstract

Relatively little is known about the role of eddies in controlling subduction in the eastern
half of the subtropical gyre. Here, a new tool to study the eastern North Atlantic Ocean
is created by combining a regional, eddy-resolving numerical model with observations
to produce a state estimate of the ocean circulation. The estimate is a synthesis of a
variety of in-situ observations from the Subduction Experiment, TOPEX/POSEIDON
altimetry, and the MIT General Circulation Model. A novel aspect of this work is the
search for an initial eddy field and eddy-scale open boundary conditions by the use of
an adjoint model. The adjoint mode! for this region of the ocean is stable and yields
useful information despite concerns about the chaotic nature of eddy-resolving models.
The method is successful because the dynamics are only weakly nonlinear in the eastern
region of the subtropical gyre. Therefore, no fundamental obstacle exists to constraining
the model to both the large scale circulation and the eddy scale in this region of the
ocean. Individual eddy trajectories can also be determined.

The state estimate is consistent with observations, self-consistent with the equations
of motion, and it explicitly resolves eddy-scale motions with a 1/6° grid. Therefore, sub-
duction rates, volume budgets, and buoyancy budgets are readily diagnosed in a phys-
ically interpretable context. Estimates of eddy subduction for the eastern subtropical
gyre of the North Atlantic are larger than previously calculated from parameterizations
in coarse-resolution models. Eddies contribute up to 40 m/yr of subduction locally.
Furthermore, eddy subduction rates have typical magnitudes of 15% of the total sub-
duction rate. To evaluate the net effect of eddies on an individual density class, volume
budgets are diagnosed. Eddies contribute as much as 1 Sv to diapycnal flux, and hence
subduction, in the density range 25.5 < o < 26.5. Eddies have a integrated impact
which is sizable relative to the 2.5 Sv of diapycnal flux by the mean circulation. A
combination of Eulerian and isopycnal maps suggest that the North Equatorial Current
and the Azores Current are the geographical centers of eddy subduction. The findings of
this thesis imply that the inability to resolve or accurately parameterize eddy subduction
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in climate models would lead to an accumulation of error in the structure of the main
thermocline, even in the eastern subtropical gyre, which is a region of comparatively
weak eddy motions.
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Massachusetts Institute of Technology

Thesis Supervisor: Patrick Heimbach
Title: Research Scientist — Massachusetts Institute of Technology
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Chapter 1

Introduction

1.1 Subduction and the general circulation

Throughout the subtropical regions of the world ocean, the atmosphere has a window to
influence the structure of the main thermocline and upper ocean; the window is opened
in the process of subduction. Subduction is the transfer of fluid from the mixed layer into
the interior thermocline by combined vertical and horizontal flow, or by thermodynamic
forcing. The process is typically quantified by the volume flux of subducted fluid per
unit horizontal area, known as an entrainment velocity. In general, subduction carries
surface properties of the ocean downward and out of direct atmospheric contact. There-
fore, the water-mass characteristics of the mid-latitude upper ocean directly reflect the
process of subduction. The mid-latitude upper ocean has an enormous heat capacity and
plays an obvious role in climate studies (Broecker 1991; Hartmann 1994). In addition,
subduction primarily determines the pathways of influence and information ﬂovv. For
example, tropical-subtropical exchanges primarily take place through subducted water
and through pathways made available by subduction (McCreary and Lu 1994; Deser and
Blackmon 1995; Malanotte-Rizzoli et al. 2000; Lazar et al. 2002). The sensitivity of the
composition of the subtropical ocean to atmospheric forcing raises concern because of
global climate change; however, the historical record of subduction rates is exceedingly

sparse. The impact of the atmosphere on a large class of water masses is not quantifiable
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without understanding the process of subduction.

Subduction influences more than the water-mass properties of the upper ocean; due
to the strong coupling of the density field and the velocity field by geostrophy, subduction
helps set the inherent timescales of oceanic motions. The depth and slope of the main
thermocline reflect how fast the ocean is moving. Thermocline depth fundamentally
determines baroclinic wave properties (Pedlosky 1987), and the thermocline slope is
related to velocity through thermal wind balance (Pond and Pickard 1983). Studies have
hypothesized that the timescales of subduction may also set the frequency of climate
oscillations, such as the North Atlantic Oscillation (Czaja and Frankignoul 2002) or
the El Nifio-Southern Oscillation (ENSO) (Gu and Philander 1997). As shown here,
subduction is an important process that influences the “clock” of both the internal

ocean circulation and atmosphere-ocean coupling.

1.1.1 Review of subduction

The original theories describing subduction were based upon gross large-scale observa-
tions of the ocean (also see Price (2001) for a detailed review of subduction theory).
From North Atlantic atlases of temperature and salinity (Wiist 1935; Defant 1936),
Montgomery (1938) suggested that Ekman convergence in the near-surface ocean drove
fluid into the deeper ocean. A volume budget calculation in a “stream-tube” confirmed
that the rate of fluid transfer has the same order of magnitude as the Ekman pumping
rate. Montgomery’s idea of subduction by vertical velocity at the base of the mixed
layer is the precursor to today’s concept of subduction. In fact, almost all of the later
work in ocean theory is based upon the idea that the Ekman layer can force the deeper
geostrophic circulation. The region of negative wind stress curl, and hence Ekman con-
vergence, generally defines the “subtropical gyre” (Pedlosky 1996). Iselin (1939) showed
the striking similarity between a meridional section of late-winter mixed-layer properties
and a vertical profile of temperature and salinity in the North Atlantic. He suggested
that surface layer properties slide down density surfaces to set the properties of the

interior ocean. As an aside, Iselin did not call upon mass lateral movement to explain
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Figure 1-1: A depth-time schematic of Stommel’s mixed-layer demon. An upper ocean
water column with seasonally-varying mixed-layer depth (thick, dashed line) and down-
ward Ekman pumping leads to net transfer of fluid from the seasonal to main thermo-
cline. Effective subduction only occurs in a short time period because subducted water
is re-entrained into the mixed layer. The last permanently-subducted water of year 1
(thin, dashed line) leaves the mixed layer in March. From Williams et al. (1995).

the connection between surface and depth, but instead remarked that “lateral turbu-
lence” could be responsible. Forty years passed before Stommel (1979) explained why
late-winter surface properties reflect those at depth. He showed that the typical sea-
sonal excursion of the mixed layer is larger than the vertical displacement of water, and
hence, only late-winter subducted water avoids entrainment back into the mixed layer
(see Fig. 1-1). Later, a primitive equation model showed that the so-called “mixed-layer
demon” did indeed allow only a short window for subduction to affect the main ther-
mocline (Williams et al. 1995). All of these previous studies showed the great extent to

which the ocean’s large-scale hydrographic structure is explained by subduction.

The relationship between the mixed layer, the main thermocline, and wind forcing

was made explicit in the steady thermocline model of Luyten et al. (1983). Earlier
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mathematical models, such as the work of Robinson and Stommel (1959) and Welander
(1961), sought similarity solutions to a steady thermocline externally driven by an Ek-
man layer, but did not provide much physical insight. More than twenty years later, the
theory of the ventilated thermocline (Luyten et al. 1983) introduced a layered model
that explained the “bowl-like” shape of the subtropical main thermocline. The venti-
lated thermocline circulation was steady, inviscid and geostrophically balanced below
the mixed layer, and driven by Ekman pumping at the surface. The division of the
ocean into separate vertical layers, particularly the separation of the mixed layer and
underlying stratum, advanced our physical understanding. The direct influence of the
atmosphere on oceanic properties in the surface layer was termed “ventilation”, which
conjures the image of exposure to air. Below the surface layer, the “subducted” lay-
ers conserved potential vorticity and were adiabatic. In the limit of a many-layered
or continuous model, subduction and ventilation are identical (Cushman-Roisin 1987;
Huang 1990). The ventilated thermocline theory predicted ocean domains with distinct
dynamics due to differing pathways of subducted water. As foreseen by Montgomery’s
stream-tube model, a large portion of the gyre subducts water southward and downward.
Nevertheless, subducted water does not pass through the unmoving eastern boundary
region, termed the shadow zone. Conversely, the western boundary has an unventilated
region with homogenized potential vorticity (Rhines and Young 1982). These theoreti-
cal studies used potential vorticity as a framework to view the ocean circulation. The
theory of Luyten et al. (1983) provides the basic concepts that many later studies of

subduction rely upon.

One key omission in ventilated thermocline theory was a realistic mixed layer with
variable thickness and thermodynamics. When the mixed layer has spatially-varying
thickness, horizontal velocity causes subduction. The lateral flow of fluid across a sloping
mixed-layer base is called lateral induction (Huang 1990). Near strong currents like the
Gulf Stream, lateral induction typically produces subduction rates of 100 m/yr or more,
even though the average Ekman pumping rate is only 30 m/yr (Woods 1985; Marshall

and Nurser 1991). Another shortcoming of the ventilated thermocline model was the lack
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of mixed-layer thermodynamics. Subduction undoubtedly affects the water masses of the
interior ocean from a kinematic point of view, but mixed-layer thermodynamic forcing is
the primary way that new water masses are formed (Walin 1982; Speer and Tziperman
1992; Garrett et al. 1995). The kinematics of subduction and the thermodynamics of
the mixed layer were reconciled in the work of Marshall et al. (1999), where accurate
diagnosis of mixing and entrainment in a general circulation model (GCM) showed
that the two processes are intimately related. In summary, the addition of a more
realistic mixed layer is necessary to quantify accurately the many processes which affect

subduction.

According to a recent textbook (Wunsch 1996), “the central distinguishing feature
of oceanography as a branch of fluid dynamics is the extreme difficulty of obtaining
observations.” This is still true. However, with the advent of satellite measurements
and the continuation of intensive field programs, oceanographers now have greater ca-
pability to observe the ocean than ever before. The unprecedented supply of new data
shows clearly that the ocean moves on all space and time scales and must be studied as
such. With subduction, recent work has begun to consider the net impact of small-scale
motions. The role of “eddies”, small-scale motions with a characteristic lengthscale of
100 — 400km, is especially murky. Eddies act to diffuse tracers as well as providing an
effective advection by a “bolus velocity”. Marshall (1997) showed that the bolus veloc-
ity (Gent et al. 1995) is responsible for eddy-induced subduction (Figure 1-2). Hence,
regions with large bolus velocities have large subduction rates due to eddies. The nu-
merical model study of Hazeleger and Drijfhout (2000) showed intense eddy subduction
near the Gulf Stream, a region with large bolus velocities. Furthermore, baroclinic insta-
bility associated with oceanic fronts provided a mechanism for subduction (Spall 1995;
Follows and Marshall 1996). In the face of high-resolution observations, large-scale,
steady theories may be irrelevant. Will these theories stand up to quantitative analysis?
The inherently turbulent character of the observed ocean forces the revision of recent

theories of subduction.
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Figure 1-2: Schematic of eddy-driven subduction. Time-variable motions near a density
front, marked by tightly packed isopycnals thin lines, can transport fluid below the
mixed-layer base, marked by the boundary between high and low potential vorticity
(bold line). Following Walin (1982). Figure from J. Marshall (pers. comm.).
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1.1.2 The Subduction Experiment
Goals of the field study

The overall goal of the Subduction Experiment was to understand the sequence of events
leading to subduction, and the subsequent movement and transformation of subducted
water. Subduction is primarily due to large-scale forcing by the atmosphere, especially
by the wind. The accurate measurement of the large-scale atmospheric forcing was
therefore a necessary goal of the experiment. From a purely kinematic point of view,
the Subduction Experiment also sought the large scale mean surface flow and its con-
vergence, because this forces water downward. Connections between the kinematic and
thermodynamic viewpoints were specifically sought by the experiment; in other words,
the basic dynamic balances in the ocean were unknown. Finally, the degree of non-
locality in the process of subduction was to be determined as well. Furthermore, the
Subduction Experiment was part of the much larger World Ocean Circulation Experi-
ment (WOCE), and the goals stated here are but a subset of the overall WOCE goals
(Siedler et al. 2001).

To achieve these goals, the eastern subtropical North Atlantic Ocean was chosen as
the site of the Subduction Experiment. The region has a large-scale pattern of negative
wind stress curl (Stommel 1979; Moyer and Weller 1995) and observations have shown
that subduction occurs there (Jenkins 1987). Also, the eddy kinetic energy is low in
relation to western boundary currents or the tropics (Stammer 1997). The experiment
comprised three separate field deployments between June, 1991, and June, 1993. An
array of five moorings observed both oceanic and meteorological fields (Brink et al. 1995).
They were spaced in a “X” pattern over with typical separation of 1000 kilometers in
order to quantify largescale changes in atmospheric variables. Mooring locations are
marked in Figure 1-3. The meteorological component of moorings measured short and
longwave radiation, humidity, wind speed, temperature, and rainfall. The large scale
Bermuda-Azores high dominated the atmospheric variability in the region (Moyer and

Weller 1995). Below the surface, the moorings measured subsurface velocities (typically
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Subduction Experiment Data

Figure 1-3: The Subduction Experiment was an intensive field experiment designed to
study the subduction of fluid from the mixed layer into the main thermocline. This
study uses 5 moorings (marked by “X”) with temperature, velocity, and meteorological
observations. TOPEX/Poseidon altimetry (marked by bold, solid tracks) is also used.
here. The thin solid lines are depth contours with an interval of 1000 m.

with Vector Measuring Current Meters and with Acoustic Doppler Current Profilers)
and temperatures to a depth of 1500 meters. All of the moorings were deployed south
and west of the Azores Current in order to remain in a low eddy kinetic energy region
of the ocean, presumably because the original experiment planners believed that high
values of eddy energy would obscure their findings. This thesis takes the viewpoint that
the eddy energy is an intrinsic part of the process, and that it can not be ignored without
careful analysis. As can be seen above, the deployment of the five moorings had specific

science objectives in mind, and this study reviews whether the specific objectives were

met.




State Estimate Obs. Withheld Obs. Previously used Obs.

Mooring Temperature WOCE hydrography | Bobber, SOFAR, and ALACE floats
Mooring Velocity Mooring heat fluxes | Sea-Soar profiles
TOPEX/POSEIDON altimetry NATRE, Tritium-Helium

Table 1.1: Summary of the observations. The state estimate observations were used
explicitly to constrain the model. The center column indicates observations that were
later used as an independent check on the state estimate. Previous studies have used the
assortment of observations in the third column, but they were not directly used here.

In addition to the mooring data, other quantities were measured. The moorings were
refurbished every 8 months, so there were many hydrographic transects during transit.
Over 800 standard CTD stations and thirteen surveys with a SeaSoar towed profiler were
taken (Pallant et al. 1995; Joyce et al. 1998). The near-surface flow field was measured
with the drifters of P. Niiler and J. Paduan, and deeper measurements by twenty-eight
SOFAR (Sound Fixing and Ranging) and bobber floats characterized the flow in the
region (Sundermeyer and Price 1998). Bobber floats rested at a preprogrammed density
level, and profiled in a pre-specified density band every other day. Eleven ALACE (Au-
tonomous LAgrangian Circulation Explorer) floats of R. Davis were also in the region.
Approximately eighty other floats of A. Bower, P. Richardson, and W. Zenk specifically
studied the Mediterranean Outflow. Dye and dye-like studies were also carried out si-
multaneously. The North Atlantic Tracer Release Experiment (NATRE) occurred very
near the central Subduction Experiment mooring during the same time period {Ledwell
et al. 1993). Tritium-Helium observations of W. Jenkins also characterize rates of sub-
duction and dispersion of water masses. Last but not least, the TOPEX/POSEIDON
sea surface height observations began in October, 1992, and overlap half of the Subduc-
tion Experiment. As a whole, the Subduction Experiment was an intensive field study

with a wide variety of instrumentation.
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Results from the Subduction Experiment

Close comparison of the Subduction Experiment and ocean theory gave rise to startling
differences. Theories of ventilation and subduction have focused on the large-scale and
steady ocean (Luyten et al. 1983; Woods 1985). In contrast, mesoscale eddy energy was
a ubiquitous feature of all observations and it was not obvious that it can be ignored.
Joyce et al. (1998) showed that SeaSoar profiles of subducted water have mesoscale vari-
ability that is not damped by the process of subduction. Mixing after initial formation
was crucial to the evolving water mass properties of subducted fluid. From these obser-
vations, Joyce et al. (1998) made objective maps of the mesoscale eddy field on a scale
of 100 kilometers. Sundermeyer et al. (1998) used the ALACE floats of the Subduction
Experiment to calculate particle dispersion rates and strain rates of mesoscale eddy field.
The results of the Tracer Release Experiment (Ledwell et al. 1993) confirmed the similar
diffusive effect of the small scale ocean circulation. Other differences to ocean theory
came from geographic complications. Helium-tritium observations (Robbins et al. 2000)
showed that the Azores Current acted as a barrier to the net mass flux of subduction
(Figure 1-4). According to ventilated thermocline theory, this would create a pool of
homogenized potential vorticity (PV) behind the barrier (Rhines and Young 1982), but
such a PV distribution is not observed. Robbins et al. (2000) appealed to the diffusive
nature of subduction in this case, which is reminiscent of the net effect of the mesoscale
eddy field. Weller (2003) and Weller et al. (2004) further remark that “mean advection
[alone] cannot explain how water is carried into the mixed layer ... and eddy transport
processes should be considered.” Perhaps these differences to theory should not be so
surprising; the observational view of the ocean as fundamentally turbulent sometimes
opposes theoretical tradition.

Moyer and Weller (1995) focused on the impact of the moored meteorological mea-
surements. They showed the inability of climatological datasets of atmospheric forcing
to adequately represent the forcing at the mooring sites. Large errors in heat flux and
oversmoothing were deficiencies in the climatologies. Systematic biases reach 50% of

the total signal. Moyer and Weller (1995) warned that mean subduction rates or mean
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Figure 1-4: Schematic of the pathways of ventilation on three isopycnal surfaces. Each
swface is defined by its oy value. Montgomery streamfunction (thin, black lines), the
mean circulation (yellow arrows), and the winter outcrop line (magente dashed line)
are plotted for each surface. Different mechanisms must explain the variety of observed
subduction paths. From Robbins et al. (1998).
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Ekman pumping rates calculated from these climatological datasets (i.e., Woods 1985;
Maxshall et al. 1993) may not be representative. For example, Marshall et al. (1993)
calculate a mean subduction rate of 80 — 100 m/yr in the eastern subtropical gyre, al-
though measurements for the Subduction Experiment time period were much lower. In
summary, ocean modelers either need improved forcing fields, or they should consider
the model output to be very uncertain.

A hierarchy of models has been used to simulate the dynamics of the Subduction
Experiment region. This was (and remains) a necessary avenue of research because
the spatial and temporal resolution of the observations was not high enough to diagnose
accurate dynamical balances. The hierarchy of models ranged between the “pipe” model
of Robbins et al. (2000), the two-layer quasi-geostrophic model of Sundermeyer and
Price (1998), and the primitive equation models of Spall (1990) and Spall et al. (2000).
In particular, Spall et al. (2000) attempted to quantify subduction rates, dynamical
balances, and the role of eddies by using a global coarse resolution Climate System Model
(CSM) of the National Center for Atmospheric Research (NCAR). Typical subduction
rates were over 100 m/yr in the wall of the North Atlantic Current and 40 m/yr away
from that region, with a 5 — 10% contribution from eddy motions (Figure 1-5). This
was the first attempt to make a region-wide quantitative analysis of the Subduction
Experiment dynamics. The study used an eddy-parameterization scheme to describe the
role of eddies in subduction. A qualitative comparison of the model with observations

was also made. This thesis aims to extend and improve the line of research started by

Spall et al. (2000).

1.1.3 Unresolved questions

The original goals of the WOCE experiment have not been fully achieved by the Subduc-
tion Experiment. According to the WOCE AIMS document (1997), a major goal was
the quantification of transport estimates, water-mass formation rates, and a description
of variability. Although air-sea fluxes are known very well at the moorings, the uncer-

tainty of climatologies away from those sites makes the atmospheric forcing very poorly
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Figure 1-5: Left panel: Thermodynamic estimate of eddy-driven subduction [m/yr] by
the diapycnal bolus transport of heat in the mixed layer. Right panel: Estimate of
subduction by the mean flow [m/yr]. Both calculations were from a coarse-resolution
numerical model with an eddy-parameterization scheme. From Spall et al. (2000).

known in general. Even meteorological re-analyses are highly uncertain over the open
ocean. An improved estimate of the true atmospheric forcing everywhere is a prereq-
uisite to progress. Mean subduction rates and subduction rates from coarse resolution
models have been calculated, but these values do not have strong observational support
of the Subduction Experiment. A description of variability does exist, although its rela-
tion to the large-scale circulation is unknown. The need for basic quantification of the
Subduction Experiment parameters and variables still exists.

Another major goal of WOCE is the understanding of dynamical balances of the
ocean. Although the impact of the small-scale variability of the ocean has been noted
in all observations, the role of these motions in dynamical balances has only been quan-
tified recently. No consensus exists regarding the impact of eddies on the net product
of subduction, for example. With respect to dynamical balances and water mass trans-

formation, are eddies relevant in the eastern subtropical gyre?

Although previous research in the Subduction Experiment has achieved much with
individual data forms and models, only the recent, independent study of Weller et

al. (2004) has attempted to compare and collate the large collection of the available

23




information. A more trustworthy and self-consistent picture of the ocean physics arises
from an integration of the many forms of observations and a model. In contrast to
Weller et al. (2004), this thesis aims to be a quantitative synthesis and an extension
of the previous research through rigorous mathematical methods. The quantification
of the ocean dynamics over the entire domain of the Subduction Experiment is the
overarching goal. This thesis has already introduced the observations available, but to

properly carry out a synthesis, a numerical model is also essential.

1.2 Novel aspects of the thesis

1.2.1 Approach: synthesis of observations

To create a model-observation synthesis, a realistic model of the Subduction Experiment
region is necessary. As carried out in this thesis, this endeavor has side benefits, although
many are technical. The formulation of open boundary conditions is crucial for any
regional ocean model. No standard method for open boundaries has yet been adopted
by oceanographers. Ocean models also have many systematic errors such as improper
mixed-layer parameterizations. Deficiencies in ocean models, or discrepancies between
models and observations, lead to improvement in ocean models thémselves. In short,
the attempt to realistically simulate the ocean is an important one in itself, and has
been the subject of entire books (e.g., O’Brien 1986; Haidvogel and Beckmann 1999).
The methodology of combining observations with models has fundamental impor-
tance in its own right. These methods are important for a more general science and
engineering audience, such as the fields of computer science, economics, biology, and
any other field with mathematical models. Some of the first methods to combine mod-
els and observations in geophysics were forms of objective mapping used in meteorology
(e.g., Gilcrest and Cressman 1954; Sasaki 1970). In oceanography, large datasets are
now available, and the synthesis of large and disparate forms of information is logically
handled by combining all the observations with a model. This leads to a state estimate

of the ocean (to be defined in more detail in Section 2.1) which is our best estimate of

24




what the ocean actually does. Relatively recently, oceanographers have used the Kalman
filter (e.g., Fukumori et al. 1993; Miller et al. 1994) and the method of Lagrange mul-
tipliers (e.g., Thacker and Long 1988; Tziperman and Thacker 1989; Sheinbaum and
Anderson 1990; Marotzke and Wunsch 1993) to combine models and data. This thesis
presents novel research with the latter technique, the method of Lagrange multipliers,
otherwise known as the adjoint method (see Section 3.2). The effects of nonlinearity in
an extremely large dimensional space are explored here. In the future, the methods of
this thesis and related methods are expected to be in widespread use in oceanography

and the wider scientific community.

1.2.2 Eddy-resolving model with open boundaries

The model used in the present study is the Massachusetts Institute of Technology Ocean
General Circulation Model (MIT GCM) with the complementary state estimation codes
of the ECCO (Estimating the Circulation and Climate of the Ocean) Consortium. It is
a z-coordinate model which employs the incompressible Navier-Stokes equations under
the Boussinesq approximation and hydrostatic balance (Marshall et al. 1997a; Marshall
et al. 1997b). The dynamical core of the model is discussed in more detail in Appendix
A. The intent is to realistically simulate the Subduction Experiment region for one
year: June, 1992, to June, 1993. Also, the model is designed to explicitly simulate the
mesoscale eddy field. The Rossby radius of deformation is between 25 — 45 km in this
region, and the resolution we have chosen for the model is approximately 15 km, or 1/6°.
To completely resolve the eddy field, much higher resolution, e.g. 1/12° or even 1/20°,
is probably needed. At such high resolution, it is impractical computationally to run a
global model, or even a complete North Atlantic model. Consequently, the model domain
contains most of the eastern subtropical gyre of the North Atlantic (see Figure 1-6). At
1/6°, eddy kinetic energy of the model is typically 50 — 75% of TOPEX/POSEIDON
observations. Although the domain is small, it was chosen such that all of the Subduction
Experiment is within the interior and well away from the boundaries. Because this is

a regional model, open boundaries have been implemented. The north, south and west
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Horizontal Resolution 1/6°x1/6° =~ (14.2 — 18.2) km x 18.5 km

Vertical Resolution 10-500 m

Grid Points 192 x 168 x 23 vertical levels
Time Step 900 s = 15 min.

Wind Stress Period 43200 s = 0.5 days

Heat /Freshwater Flux Period | 86400 s = 1.0 day
Horizontal Viscosity/Diffusivity | v2 = k% = 0 m?/s

(biharmonic) | vh =k} =2x10" m?/s
Vertical Viscosity v, = 1x1073 m?/s
Vertical Diffusivity k. = 1x107° m?/s

Table 1.2: Model parameters

boundaries are open, but the Mediterranean Sea is only opened in special experiments

(see subsection “open boundaries” below).

This regional model is nested in the global, 2° state estimate of the ECCO Consor-
tium (Stammer et al. 2002). This is a great advantage because all the time-dependent
boundary values of the regional model are taken from the global estimate. For exam-
ple, the initial temperature and salinity here are taken from the global state estimate.
Preliminary model runs use the National Center for Environmental Prediction (NCEP)
Reanalysis daily sensible and latent heat fluxes and twice-daily surface windstresses.
Some modelers claim that the European Centre for Medium-Range Weather Forecasts
(ECMWF) surface forcing is superior in this region, however (L. Yu, personal communi-
cation). The atmospheric forcing fields are improved and estimated here, so a reasonable
first guess suffices for the first model runs. In conclusion, the MIT GCM is a state-of-

the-art numerical model which makes it possible to simulate realistically the Subduction

Experiment region.




Temp. and Velocity Snapshot, May 26, 1993, 310 meters

Africa

_____

Figure 1-6: Snapshot of the 1/6° model temperature and velocity fields at 310 meters
depth. Temperature has 1° contour intervals from 15°C to 21°C. The full model domain
and three open boundaries are shown. This snapshot represents our first guess at the
true ocean state on June 1, 1993. The model was started one year earlier, June 1, 1992.
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K-profile parameterization

Previous simulations with GCM'’s have shown serious systematic errors in the mixed
layer. Summertime mixed layers were too shallow and the sea surface temperature
(SST) became unrealistically warm in the seasonal cycle. For this reason, the K-profile-
parameterization (KPP) scheme is used here (Large et al. 1994). The scheme improves
the model by parameterizing wind deepening of the boundary layer, by enhancing shear
instability in the upper ocean, and by reducing the dependence on surface restoring
conditions. The KPP model calculates increased diffusivities for underrepresented and
unresolved ocean processes through the similarity theory of turbulence (Tennekes 1973).
Another improvement of this boundary-layer model is its nonlocal behavior; heat, salt,
and momentum can be fluxed through vertically homogeneous regions. Turbulent fluxes
are therefore independent of local gradients, which is frequently the case in the mixed
layer. As a result, momentum input at the surface can cause the boundary layer to pen-
etrate the stable thermocline by wind-stirring. The improved model physics with KPP
reduces the dependence on surface restoring conditions (Sausen et al. 1988). Surface
restoring conditions (sometimes called flux corrections, especially with coupled models)
are relaxation terms for SST to prevent systematic bias. These terms force the model to
suppress eddy activity because of the constraint to a large scale SST field. The overall
model performance is much improved in comparison with observations when the KPP
model is added (see Chapter 3).

The KPP model has several weaknesses. In general, mixed-layer depths are still
shallower than observed. The wind-stirring parameterization in KPP reduces the dis-
crepancy but does not completely eliminate it. In coastal regions, the mixed-layer model
has numerical problems when the mixed layer reaches the sea floor. There, the model
behavior is noisy and nondifferentiable (see Section 3.3.3 for a definition and discus-
sion), and nonphysical bottom fluxes are present. Continental shelves were removed in
this model to eliminate the problem as they are not the focus of the research. A major
practical problem with KPP is that the scheine analyzes vertical columns independently.

Computational noise frequently develops in the horizontal direction. An ad-hoc solution,
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used here, is the introduction of a horizontal smoothing function. The model results
are not highly dependent on this smoothing in the subtropical gyre. In conclusion, the
KPP model represents the best boundary-layer model at present, but improvement is

possible.

Open boundaries

The implementation of open boundaries has not traditionally been a standard feature of
GCMs. Here, density and velocities from the global state estimate (Stammer et al. 2002)
are used to constrain the boundary through a sponge layer. The boundary conditions
are treated as adjustable parameters, so an estimate of improved boundary velocities
emerges in the synthesis (see Chapter 3). The Mediterranean Sea outflow is closed in
the early experiments of this thesis, and is open later. The open boundary conditions
vary in time on a monthly basis. Also, they have been calculated to exactly balance the
volume flux into the domain on a monthly basis. With our present level of knowledge,
exact volume conservation is a reasonable null hypothesis over these timescales. This
assumption is checked later in the thesis (see Section 2.4.2). The design and implemen-
tation of numerical code for control and estimation (inverse aspects) of open boundary
conditions is potentially a major contribution of this thesis, and is discussed later (see
Section 2.4). The formulation of the open boundaries of the forward model alone is
discussed in the next paragraph.

Open boundaries which require the prescription of the full oceanic state for forward
integration are overdetermined and formally ill-posed (Orlanski 1976; Oliger and Sund-
strém 1978). The prescribed open boundary state usually contradicts the dynamical
equations that describe the interior circulation. At every timestep, two pieces of infor-
mation exist for the new open boundary state: the update from the equations of motion
and the prescribed state for the next timestep. This problem is formally overdetermined
because too many boundary conditions are supplied (Bennett 2002). The correct num-
ber of boundary conditions for a primitive equation model depends on the interior flow

characteristics and the vertical structure of waves (Oliger and Sundstrém 1978). This
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is much more complicated than the case for a quasigeostrophic or shallow-water model
where the correct number of open boundary conditions is more easily calculated. In
summary, the addition of open boundaries to a primitive equation model is ill-posed

because the solution of an overdetermined problem usually does not exist.

There are two ways to resolve the ill-posedness of the open boundary problem with a
general circulation forward model: impose the correct number of boundary conditions in
the first place or discard extra information. Radiation boundary conditions, like those of
Orlanski (1976) and Marchesiello et al. (2001), identify passive and active boundaries,
then modify the passive open boundary values. In this process, they attempt to apply
the correct number of boundary conditions. On the other hand, a sponge layer, as used
in this thesis, keeps the transition between the boundary and interior smooth by adding
a relaxation term to the dynamics. In the forward numerical model, the right hand
side of the temperature equation (Equation A.4) includes advection and diffusion terms,

symbolically written Gy, and an extra term due to the sponge layer:

—II—%O(:U, z,t) = Gy(z, 2,t) + - 0(z, z,t) — 6(Zob, 2, t)] (1.1)

_
(:IJ - :rob)

where 7 is a relaxation timescale that depends on distance from the boundary, (z —Zo).
At the boundary, the timescale is formally zero; there 8(zq, 2) is prescribed. The sponge
layer width is 1°, in which the boundary solution smoothly transitions to the interior.
Salinity and horizontal momentum are also relaxed to prescribed values in the 1° layer.
The sponge layer is an ad-hoc and nonphysical solution; therefore, a state estimate
which is highly sensitive to the sponge layer formulation should be rejected. The model-
observation synthesis of Chapter 3 seeks adjusted open boundary conditions which are
dynamically consistent with the interior solution. Bennett (2002) postulated that the
treatment of the open boundaries as an inverse problem renders the problem well-posed.
Nevertheless, finding well-behaved boundary conditions has not previously been done

for an eddy-resolving, primitive equation model.
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Quantity Dimension/Size/Length

State Vector 3.14 x 10° elements

Control Vector 5.49 x 108 elements
Observations 1.28 x 107 observations

Model Input 7.98 x 107 forcing elements
Model Output 1.09 x 10" estimated elements
Parallel Processors 24-48 processors

Computational Time | 400 cpu hours/iteration with IBM 1.3 GHz Power4 processors
Search Iterations ~ 120 iterations
Total Computer Time | ~ 50,000 hours (5.7 years)

Numerical Code 569 subroutines
322,895 lines of forward code
22,507 lines of adjoint code

Table 1.3: Dimension of the problem

1.2.3 Size of the problem

The integration of a realistic eddy-resolving model is expensive and has many uncertain
parameters. The sheer size of the problem presents a challenge. First, the high resolu-
tion of the model gives a very large number of grid points and a great computational
cost. In fact, there are over three million prognostic variables for the model (identified
as the state vector in Table 1.3). Second, the search for a model solution which fits the
observations leads one to vary the uncertain boundary conditions’. The important, un-
certain boundary conditions are chosen to be control parameters, and are further defined
in Section 2.1. Here, there are over five million control parameters and consequently
the search occurs in a five-million-dimensional space. The thesis tests the assumption
that the high-dimensionality of the problem does not alter its fundamental character.
Of course, the computational cost is high and present-day limits of computing power

are approached.

1Boundary conditions include initial conditions, open boundary conditions, and surface forcing.
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Computational tools

A computationally-intensive model needs massively parallel supercomputers to run the
code. The MIT GCM has a “WRAPPER” environment which easily allows this to
be implemented. In this thesis, the code is parallelized using a domain decomposition
approach where subdomains (also called “tiles”) of the model are sent to separate pro-
cessors (see Foster (1995) for an excellent introduction to parallel computing). The
limiting factor of the computational scalability of the GCM is communicétion between
processors. When the subdomain size shrinks below thirty by thirty grid points, in-
creased communication time offsets the increased computer processing power. With the
number of grid points, twenty-four processors are the optimal number here. At var-
ious times during the thesis, the model was run on the eighth? and eleventh® largest
supercomputers in the world. The practical implementation of the numerical model
would not be possible without the parallelized code and the access to massively parallel

supercomputers.

Another technical aside is that the MIT GCM numerical code has been automatically
differentiated with the TAF (Tranformations of Algorithms in Fortran) tool of Giering
and Kaminski (1998). An automatic differentiation tool allows for the adjoint model
code to be regenerated whenever there are necessary changes in the forward code. The
adjoint model provides vital information for fitting the model to observations, and is
fully introduced in Section 3.2. The forward model contains over 500,000 lines of code,
so hand-writing and rewriting the adjoint code would take approximately one to two
years of dedicated work (Yu and Malanotte-Rizzoli (1996) took two years to hand-code
the adjoint of the MOM ocean model). Therefore, the compatibility of this particular

model with the adjoint generator makes the entire thesis feasible.

2The IBM SP3 “blue horizon” of the San Diego Supercomputer Center has 1,152 375 MHz processors,
the 8th largest unclassified supercomputer in the world upon its release in 2000. Inevitably, it no longer

ranks in the top 50 after a mere two years. Source: www.top500.org.
3The IBM SP4 “marcellus” of the Naval Oceanographic Office Major Shared Research Center, Sten-

nis Space Center, MS, is the 11th largest supercomputer in the world (2003) with a peak performance
of 7.5 Teraflops.
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1.3 Synopsis of the thesis

To review, Chapter 1 shows the widespread impact of subduction on the water mass
properties of the main thermocline. Past studies of subduction have focused on the large
scale and steady or seasonally-varying ocean circulation. Recent papers have begun to
consider the impact of eddy-driven subduction and have shown that eddies are important
in certain regions of the ocean. In the subtropical gyre, mesoscale eddy energy is a
ubiquitous feature of all observations and it is not obvious that it can be ignored. The
observations of the Subduction Experiment do not adequately resolve the eddy-scale
motions of interest. A numerical model, the MIT GCM, statistically combined with
the observations, produces a estimate of the ocean circulation at 1/6°. Using this state
estimate, this thesis aims to understand subduction in a realistic, turbulent ocean.

Chapter 2 shows that the synthesis of a model and observations can be formulated as
a giant least-squares problem. To advance the scientific agenda, a best estimate of the
ocean circulation is sought from the combination of the Subduction Experiment observa-
tions and an eddy-resolving, regional general circulation model for June, 1992, to June,
1993. Measurements of temperature and velocity at five moorings, TOPEX/Poseidon
satellite altimetry, Levitus climatologies and Reynolds sea surface temperatures are used
as constraints on the model. The model trajectory is controlled by adjusting the initial
conditions, boundary conditions, wind stresses, heat and freshwater flux. The goal is to
vary the control parameters to find a model trajectory that fits the observations within
their uncertainty.

Chapter 3 finds a model solution which fits both the large-scale and small-scale
observational signal. The method of Lagrange multipliers [otherwise known as the ad-
joint method (Wunsch 1996)] is a logical way to combine oceanic datasets into one
dynamically-consistent estimate. For field campaigns where all the data has been com-
piled and collected, the adjoint method uses all the data at once and the method enables
estimation from data collected in future time. The method is also computationally fea-
sible because it does not requii*e a extraordinarily large number of perturbed model

simulations, nor does it need to compute large error covariance matrices. Practical
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implementation and solution of the minimization problem is detailed in this chapter.
In particular, the nonlinearity of the model constraint is shown to be a fundamental
factor in the optimization problem. Despite concerns of the published literature (Lea
et al. 2000; Kohl and Willebrand 2002), trajectories of the eddy-resolving Subduction
Experiment model diverge quasi-linearly in time and the adjoint model is stable. Con-
sequently, the adjoint-computed gradients give adjusted initial conditions which do lead
to an improved model trajectory. After fifty iterations of the forward-adjoint model, the
method decreases the data-model misfit nearly to the level of the expected error in the
observations. For this study, there appears to be no fundamental obstacle to adjusting
the model trajectory into complete consistency with the observations and their prior
estimated error. The adjoint method is successful because the forward model itself is
only weakly nonlinear in the region. The model is not extremely sensitive to the initial
conditions, and the problems associated with chaotic dynamics do not interfere. The
result is a dynamically-consistent, three-dimensional, time-varying, nested, high reso-
lution estimate of the ocean circulation. The Subduction Experiment model suggests
a wide potential for the adjoint method in oceanography, and this is a major result in

itself.

Chapter 4 illuminates the role of eddies in subduction. This chapter uses the state
estimate to diagnose quantities of interest which can not be measured directly. A pre-
liminary step is to compare subduction in the state estimate to classical theory. As
expected, the seasonal cycle and the mixed-layer demon influence the properties of sub-
ducted water, but the pathways of subduction do not resemble those of an idealized
ocean model. The pattern of annual subduction rates has a small-scale signature and
suggests a significant contribution of eddies to subduction. The goal of this thesis is to
quantify the relative importance of eddy-driven subduction to the total subduction. In
the state estimate, eddy-induced volume fluxes across the base of the mixed layer are
15% of the total subduction, and consequently are locally important. When subduction
is calculated in density coordinates, eddy-subduction is seen to be important in the

density range of 25.5 < o < 26.5, which encompasses both the Azores Current and the
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North Equatorial Current. From these findings, the eddy scale motions are an additional
and sizable source of subducted water near fronts in the eastern North Atlantic Ocean.

Chapter 5 summarizes the findings of the thesis. The novel scientific results of this
thesis, as well as advances in the methodology, are reviewed. Finally, the limitations of

the thesis are discussed, with speculation for future research.
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Chapter 2

The Model-Observation

Least-Squares Problem

2.1 Overview of the concept

To shed new light on subduction, this thesis creates a new estimate of the ocean circula-
tion during the Subduction Experiment. The goal is to estimate the ocean circulation as
realistically as possible. In a world of imperfect models and sparse, noisy observations,
how can one determine the “goodness” of an estimate? A set of criteria, sometimes
called the performance in control theory (ie., Dahleh (1999)), are determined by the
observations and characteristics of the ocean. Mathematically, the performance criteria
are written as a giant least-squares minimization problem. This chapter defines the
specific least-squares problem at hand: the search for an eddy-resolving regional model

trajectory that fits the Subduction Experiment observations within their uncertainty.

Definitions

Before proceeding, it is instructive to be more specific about our stated goals. We wish
to estimate the circulation of the ocean as described by the three-dimensional, time-
varying density, velocity, and surface elevation fields. From the temperature, salinity,

and horizontal velocity fields, all physical quantities of interest are computable (see
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Appendix A). Hence, temperature, salinity, and horizontal velocity completely describe
the previous history of the ocean circulation and are called the state!. The useful
combination of model and observations is called a state estimate as we are explicitly
interested in the circulation (i.e., the state) as it evolves. State estimation problems are
frequently solved by methods that have been developed in the field of control theory, the
study and search for forces or controls that drive an observed system in a desired way.
An ocean model is driven by forces which can be considered controls, like the relativellyv
unknown atmospheric fields over the open ocean. Of course, the actual ocean is not
controllable due to engineering limits, but instead one wishes to control an ocean model
to behave in a way which is consistent with observations. Much like control theory,
the controls themselves are considered important quantities to be estimated®. Hence,
observations contain knowledge of the true boundary conditions, not just the interior
ocean where the observations were taken.

The methodology used here does not solely come from control theory. Many of
the methods are also classified as inverse methods, which are methods used to solve
problems that are not posed in the usual mathematical way (Tarantola 1987; Wunsch
1996). Inverse methods are unique in that they consider uncertainty to be an essential
part of the solution. This problem is also classified as a part of optimization theory, which
has a large set of available tools, although many were developed for small-dimensional
systems (Luenberger 1984; Gill et al. 1986). Optimization includes both maximization
and minimization problems, such as the least-squares problem here.

When dealing with combinations of models and observations, many atmospheric sci-
entists and oceanographers prefer to use the term data assimilation. Some researchers
denote both state estimation and forecasting as parts of the wider field of data as-
similation. Unfortunately, data assimilation now has the connotation of the particular
methods developed for the atmosphere and has little meaning to the ent.ire scientific com-

munity. Therefore in an effort to use a terminology that is meaningful to those outside

1For the numerical model, the number of variables needed for a restart at any time is larger than

the state described here.
2Estimated controls contain both an estimate of the true boundary conditions as well as model error.

Separating these two contributions is not usually trivial.
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of atmospheric and oceanic physics, the methodology here is termed state estimation.

Performance criteria

Observations undoubtedly provide information on the state of the circulation. Neverthe-
less, measurements are imperfect. They contain some error due to the instrument which
should be accounted for. Also, observations are irregularly distributed in space and time
and typically miss some features of interest. This is true in the Subduction Experiment,
where five moorings can not be expected to give much spatial coverage despite their
decent temporal coverage. The diagnosis of budgets, such as subduction rates, are espe-
cially difficult with mooring observations. Although observations are sometimes seen as
the only source of “sea-truth”, they alone are not adequate to make an estimate which
fulfills our criteria.

Like observations, the laws of physics themselves provide meaningful information
which can be used to improve a state estimate. However, the laws of physics, embodied
here as a general circulation model (GCM), are uncertain as well. Model trajectories are
uncertain because of both poorly-known oceanic foreing fields and inaccurate dynamics.
On the positive side, a model provides information with high-resolution, only limited
by computer power. The well-distributed coverage of model output makes possible the
computation of sensible budgets. A complete state estimate must use the laws of physics
because of the useful information they provide.

At this point, an estimate that best uses all available information necessarily contains
both observations and a model. A further criterion is that the estimate provides a
statistical blend of both sources that depends on their relative uncertainty. In cases
where the error in both sources is assumed to be jointly normal, the proper statistical
blend can be proved to be the maximum likelihood solution, the best estimate of truth
(Van Trees 1968). A statistically-rigorous combination will also allow for the careful
assessment of the uncertainty of the final solution, a desirable quantity. The result of
our combination of data and model could be called dynamic interpolation; a dynamic

model interpolates and fills the missing information between given observational points.

39




The estimate need not go through the exact observational values, however. Because of
the observations’ uncertainty, this would not be the best solution anyway. Consequently,
a model can be used to distinguish between signal and noise in observations. As can be
seen, there are many reasons to form an estimate from both model and observations.

When does a model serve as an adequate dynamic interpolator? Cross-validation®
is the comparison of an estimate to withheld data, and it evaluates the model’s ability
to predict the ocean circulation in the absence of observations. The MIT GCM shows
promise as a dynamic interpolator for two reasons. One, the first-guess model trajectory
is reasonably close to the observations. This model trajectory uses none of the observa-
tions in the cost function; it withholds all the data points. Two, the model compares
well with observations that were not included? in the estimation process. A WOCE
hydrographic section is used for this purpose later (see Section 3.5.4). Cross-validation
is one way to give the investigator more confidence in the state estimate.

To be explicit, our performance criteria can be listed:
e Follow what was observed within its uncertainty

e Adhere to the laws of physics within their uncertainty at all times

e Combine all information in a statistically rigorous way

The performance criteria are objectified into one number, the cost function: a sum of
squared elements of the model-data misfit. A small cost function represents a solution
which follows all of the performance wishes. Of course, “small” is a relative term which
must be defined later. Second, we identify uncertain parameters in the model which
can be adjusted. These parameters are known as the control variables, because they
are the parameters that allow control of the model. The goal of combining the model
and observations can now be restated: adjust the control variables such that the cost
function has an appropriately small value (see Figure 2-1). More specifically, the cost

function and its individual elements must satisfy the prior error statistics, which include

3Cross-validation is perhaps a misleading term because true model validation is not possible; only

falsification is possible.
4A best state estimate, however, would use all available information in the cost function.
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specification of the overall error as well as the distribution of individual errors (see

Section 3.4.2). One added criterion is:
o Do not allow unrealistically large controls

Together, these criteria become the mathematical statements which allows us to unam-

biguously define the problem of combining observations with a model.

State Estimation

>

Figure 2-1: Schematic of state estimation. The goal is to find a model trajectory that is
within observational uncertainty (O’s with error bars). The model trajectory is also sub-
ject to uncertainty due to model error and uncertain model parameters (shown as a gray
probability distribution cloud). Here, the first-guess model simulation (solid black line) is
not within the observational uncertainty at all times. However, there is a model trajec-
tory (dashed line) that is consistent with both the observational and model uncertainty.
This improved model trajectory is the state estimate.

As a reminder, it is not necessarily true that all the performance criteria can be met.
In practice, these criteria actually form a very stringent test. In case of failure of one
or more items, all is not lost. Such a result gives the investigator information about the
inconsistencies between various observations or could possibly force the investigator to

rethink the accuracy of measurements. Another possibility is the rejection of the model
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as inadequately realistic. This serves as a call for model improvement. In any case,
the performance criteria serve the useful purpose of quantifying the problem at hand,

whether they can be satisfied or not.

2.2 Cost function

The form of the cost function is a squared misfit between the estimate and all a priori
information. The problem of combining a model and observations is reduced to a least-
squares problem, albeit a giant one. In this section, the thesis systematically introduces
the contributions to the cost function. The observations, the prior knowledge of the
controls, and the laws of physics all play a role. The cost function is given the math-
ematical symbol J. It is written out in its entirety in terms (2.1a)-(2.1s) on Page 43.
In general, boldface symbols refer to matrices and vectors, overbars refer to some kind
of averaging, and primes are some kind of anomaly value. A more detailed guide to
the individual terms and mathematical symbols follows in the next sections. To repeat
an earlier theme, the cost function simply takes the form of a sum of squared differ-
ences. Minimizing the cost function is equivalent to solving a least squares problem,
although many contributions must be considered. The first five terms (2.1a)-(2.1d) are
the observational misfit terms, the goodness of fit to the observations. The next three
terms (2.1e)-(2.1g) are the climatological misfits; they constrain the estimate to ocean
climatologies with considerable leeway. The next fourteen terms (2.1h)-(2.1s) are control
penalty terms; they constrain the control parameters to lie within a certain range of their
initial guess or to adhere to dynamical rules. The control penalty terms take the place
of an explicit model error term in our cost function. The next sections explain the cost

function in a term-by-term manner.

2.2.1 Role of weights

The generic form of the cost funetion (Equation (2.1)) has a weighting matrix, W, with

each term. Critics of inverse problems claim that the weighting matrices determine the
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entire solution and can be manipulated by the investigator to serve any purpose. They
are correct that the weights determine the solution to the problem. However, the choice
of weights should be physically motivated, and the final solution must pass posterior
error tests. Lorenc (1986) has shown that the weight matrix, W, should be the inverse
of the noise covariance matrix, R,,, to have the minimum variance solution. In other
words, the weight used in the cost function is inversely related to the acceptable error
or noise in the misfit; a smaller acceptable error leads to a larger weight in the cost
function. Lorenc (1986) further showed that this judicious choice of weights leads also
to the maximum likelihood solution if the error statistics are jointly normal (Van Trees
1968). For statistical rigor, only a priori knowledge should be used to determine the
weights. Then, the final estimate must have errors that satisfy the original specifications:
a difficult posterior test to pass. Other critics point out that there are many different
ways to adjust the controls to achieve the same goal. For example, the ocean model
can be made warmer by either warming the initial condition or by imposing a heat flux
at the surface. The weights distinguish which process is more likely. In summary, the
weights are a ubiquitous feature of the cost function, and they are not manipulated in a

haphazard fashion; knowledge of physics and a priori error statistics drives the choices.

Although the theory behind the weights may be sophisticated and well-developed,
the practical application of such ideas is typically far from straightforward. For example,
the misfit between observations and model may be due to a number of reasons. First,
the observations themselves contain noise due to measurement error. This is typically
a small error, although with satellite altimetry such measurement error rivals the sig-
nal we wish to observe. Second, there may be representation error due to the model.
Representation error results because the model grid and the observational locations do
not coincide. In such a case, the model must be mapped onto the observation’s loca-
tion via an imperfect interpolation scheme. With a high-resolution model such as the
one in this thesis, this form of representation error is small because there is very little
separation between grid points. Another representation error is due to missing physics

in the model. All unresolved processes must be considered as possible sources of error
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in a model-observation comparison.

Zang-Wunsch model of low frequency variability

To compute the expected representation error, the energy in various wavenumber and
frequency bands is computed via the spectrum of Zang and Wunsch (2001, hereafter
ZW, Figure 2-2). The energy that must be considered noise varies with data type and
model resolution. ZW use a simple dynamical model of a linear, continuously-stratified,
time-varying ocean and a knowledge of a wide variety of oceanographic measurements.
Their model can be used to infer a universal shape of the frequency-wavenumber spectra,
and also can be used to infer spectra that are not observable. The main weakness of
the Zang-Wunsch model is the potential energy structure in the mixed-layer. Quasi-
geostrophic dynamics do not describe this region of the ocean, so other assumptions
must be made to account for the seasonal cycle. Nevertheless, the Zang-Wunsch model
provides a reasonable a priori guess of the mesoscale eddy energy everywhere in the
domain.

The recipe for calculating eddy energy from the Zang-Wunsch model follows. First,
SSH variability from TOPEX/POSEIDON is used to calibrate the horizontal distribu-
tion of potential energy (I(4, \), equation (22), ZW). The horizontal pattern of energy
used here is very similar to the original pattern in ZW. The vertical structure of energy
is partitioned in the first three modes with a ratio of 1 : 1 : 1/2. From the surface
potential energy and the vertical structure, temperature variance is calculated at every
level (equation (41), ZW). To account for the seasonal cycle, the Reynolds SST seasonal
variance is calculated, and added to the previous temperature variance profile with an
exponential decay scale of 200 meters. 200 meters is chosen to coincide with the deepest
wintertime mixed layers in the region. Next, eddy kinetic energy is estimated. Surface
potential energy is related to kinetic energy through geostrophy, as also used by Stam-
mer (1997). Again, the vertical normal modes are used to extrapolate and estimate the
vertical structure of kinetic energy. The prior estimates of eddy energy compare well

with the observations of the Subduction Experiment. In addition, estimates of needed
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Figure 2-2: Universal frequency and wavenumber spectrum for the streamfunction of
the Zang-Wunsch model of ocean variability. From Zang and Wunsch (2001).
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but unobserved quantities can be made (Figure 2-3).

Zang-Wunsch Model Eddy Velocity: 310 meters

Figure 2-3: Standard deviation of time-variable zonal velocity at 310 meters in the Zang-
Wunsch model. This thesis uses this eddy field as an a priori estimate for weights in
the cost function. Notice two bands of higher eddy energy: the Azores Current and the
North Equatorial Current.

2.2.2 Observational terms
Subduction Experiment moorings

The state estimate should accurately reflect the observations of temperature and velocity
made at the five locations of the Subduction Experiment moorings. There is a greater
density of temperature measurements, but there are also many velocity measurements
by Vector Measuring Current Meters (VMCM’s, Weller and Davis, 1980) in the upper
1000 meters. VMCM’s provide both the u and v component of velocity which is directly
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comparable® to model output. Unfortunately, there are no salinity measurements at the
moorings. Also, several month-long failures are present in the data. In the vertical,
measurements were concentrated in the upper 1000 meters. Measurements in the deep
ocean were so sparse that they were ignored for this study; also, our primary objective
is to understand the mooring data as it affects subduction and upper ocean processes,
so deep ocean measurements have little influence in a short time period.

In the cost function, the misfit between the model and the Subduction Experiment

moorings is:

Sz mon 578 Mo (T — Topoor) T W (T — Trnoor) (22)
+ 2%2 mon 25 moor (I_j - ijoor) T Wyzer (U— - tr-moor) (2'3)
+ 2%2 men Zs meor (V - vmoor) T WVEL (v - vmoo'r) (24)

where T, U, and V are the model temperature, zonal and meridional velocity, Toor,
Unmoor, and V00 are the observed temperature, zonal and meridional velocity, the
overbar represents a monthly mean, and Wy and Wy gy, are diagonal weighting matrices.

The weighting matrices take into account the instrumental error in the records as
well as the representation error in the model. The temperature measurements are accu-
rate within 0.01°C (Brink et al. 1995) and the current meters are assumed to measure
within 0.005 m/s, although no error estimates were published. The numerical model
does not accurately represent the physics below scales of 100 kilometers, a much big-
ger error. Those small scales are either completely unresolved, or mesoscale activity is
underrepresented and overdamped by numerical friction. Wavenumber spectra of ocean
properties drop off too quickly at scales smaller than 100 kilometers due to friction. This
is an example of representation error in the model, and any energy in the observations
at these scales will have to be considered noise in the observations. Using the model of
Zang and Wunsch (2001, and Section 2.2.1), it is possible to calculate the ocean vari-

ability at scales less than 100 kilometers and at periods greater than a month (because

51f the current meters measured speed, this would be a nonlinear function of the model state, and
could cause additional problems.
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we are using monthly means for the comparison). Changes in model resolution require
a revised estimate of representation error.

Mesoscale variability is a strong function of horizontal location and depth. For
example, the eddy kinetic energy varies by a factor of five in the region, with a band
of high energies in both the Azores Front and the North Equatorial Current. Also,
the expected variability, and hence representation error, varies by a factor of ten in the
vertical. In addition, the vertical structure itself changes throughout the region. In the
northern, “mid-latitude” part of the basin which is observed by the central, northwest
and northeast moorings, most of the eddy energy is equally partitioned between the
barotropic and first baroclinic modes. For the southwest and southeast moorings, the
second baroclinic mode contains much more energy. The vertical partition of horizontal
kinetic energy is consistent between the mooring observations and the Zang-Wunsch
model (also see (Wunsch 1997)). All of these subtleties are taken into account in our
estimate of the expected errors. However, there are a few assumptions here that should
be highlighted. The expected errors due to the misrepresented mesoscale eddy field are
assumed to be isotropic, as evidenced by the identical Wy g weighting matrices for
both » and v. This assumption is actually quite good in this region without a strong
western boundary current. Also, the Zang-Wunsch spectrum is not a function of time,
and likewise our weighting matrices are not a function of time. Finally, no covariance
is assumed between the model-observation misfit at different locations and times. This
is clearly wrong, but is a first-order attempt to accurately guess the error statistics. As
can be seen above, a knowledge of the physics has guided our choice for the mooring

weights.

TOPEX/POSEIDON altimetry

Satellite altimetry offers a wealth of information that was not previously available. Al-
though the satellite altimeter mission was not explicitly part of the Subduction Experi-
ment, the sheer number of observations of sea surface height made by the TOPEX/POSEIDON

satellite is staggering, and any estimate of the ocean circulation would be remiss to ig-
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nore it. Here, direct comparisons are made between the satellite-measured sea surface
height anomaly and the model on the satellite’s ground tracks. The mean sea surface

height is computed from 7 years of TOPEX/POSEIDON observations and put onto the
model grid.

The misfit between the model and the TOPEX/POSEIDON satellite altimetry is:

360 days ’ ,
> M —1,)T Wy (7' —n) (2.5)

t
+ (T Tp)T Weeoid (71— Typ) (2.6)

where 7,, is the along-track sea surface height observed from the TOPEX/POSEIDON
satellite, 17 is the model sea surface height on the same tracks, the overbar is a one year
mean, primes represent the daily-averaged sea surface height anomaly, Wy, is the weight
on sea surface height anomaly, and W g4 is the weight on mean sea surface height field

(primarily due to errors in the geoid).

Unlike many other observations used in this thesis, TOPEX/POSEIDON measure-
ments have considerable instrumental noise. Sources of this noise include orbital tracking
error and the E-M bias of ocean waves (Fu et al. 1994; Tai and Kuhn 1995). Therefore,
W,, takes into account a spatially-invariant and stationary background noise of 4.3 cm.
For comparison, the signal we wish to track has magnitudes of 5 — 20 cm in this region.
Also, some percentage of the eddy energy will not be represented by the model. Accord-
ing to the Zang-Wunsch model, 6% of the sea surface height variance is at spatial scales
less than 100 kilometers; this is also treated as acceptable noise. As with the mooring
weights, W, accounts for spatial variations in the acceptable noise, but is not a function
of time and is diagonal. The mean sea surface height field has errors of a different kind:
errors in the absolute reference level or geoid. At scales less than 1000 km, geoid errors
dominate the mean sea surface height signal. W gy is therefore taken from published
error estimates of the EGM96 geoid (Lemoine et al. 1997; Wunsch and Stammer 1998).
With the small domain of the Subduction Experiment, the mean sea surface field is only

a marginal constraint.
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2.2.3 Climatological terms

Although ocean climatologies are not usually considered “observations”, they are a col-
lection of observations and they do contain information. Here, the Levitus climatology
of temperature and salinity and Reynolds sea surface temperature climatology (Levitus
et al. 1994; Reynolds and Smith 1994) are monthly-averaged climatologies of the sea-
sonal cycle. Their information content is used in the least-squares problem by adding

terms to the cost function.

The misfit between the model and ocean climatologies is:

2%2 men (—T- - —T_Lev)T WLevT (T - TLe'u) (27)
+  Rmn (§_851.)T Wrews (S —Siew) (2.8)
-+ 2%2 mon (Tsfc - TRey)T WSST (Tsfc - TRey) (29)

where T, S, and T, are the model temperature, salinity and sea surface temperature,
Trevs Siev, and Tre, are the Levitus temperature, Levitus salinity and Reynolds sea
surface temperature, the overbar represents a monthly mean, and Wrey,, Wies and
Wsr are diagonal weighting matrices.

The Levitus climatology of temperature and salinity includes error estimates as a
function of depth, and these are primarily used to compute the weights We,. The
representativeness of a climatology for any particular year must be estimated. Inter-
annual variability contributes to the misfit between the climatology and model fields.
Upon further inspection, the published errors in Levitus’s product are similar to the
interannual variability as seen by Roemmich and Wunsch (1984) and Parrilla (1994).
In addition, there are other forms of error in the climatologies. The uneven coverage
of much of the ocean probably presents a large source of uncertainty, but because the
actual distribution of data points has not been presented, one does not know how this
would change the error estimates. On a different note, the Levitus compilation repre-
sents the large-scale density structure of the ocean and not the mesoscale eddy signature.

Again, the Zang-Wunsch model is used to determine the energy of the mesoscale which
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is not represented in the dataset. In this case, the climatology only represents energy at
lengthscales larger than 400 kilometers because of its coarse gridding; 58% of mesoscale
energy in temperature fluctuations is at smaller scales and is considered noise. For sim-
plicity, the Reynolds weights W ger are identical to the Levitus weights at the surface.
After accounting for all of the above sources, the acceptable error in the model fit to
the ocean climatologies is much larger than the acceptable error for an individual, in-
situ observation. Because cost function weight is inversely proportional to acceptable
error, terms (2.7)-(2.9) are downweighted relative to the other observational terms in
the cost function. This does not automatically render the climatologies unimportant in
the state estimation problem; the total number of independent pieces of information in

a climatology determines its relative influence.

On the consistency of the multiple datasets

Although our ultimate goal is to combine a model with all forms of observations, one
must first assure that the observations are consistent amongst themselves. A comparison
between observations of differing data types, such as between the mooring temperature
and satellite sea surface height, is difficult. Such a study would be a whole research
project unto itself (Stammer 1997). This consistency check will be done automatically
during the process of combining the model and observations, and can be determined by a
final estimate statistics. Nevertheless, for the sake of bolstering confidence before more
intensive endeavors, the mooring temperature dataset can easily be compared to the
Levitus climatology for temperature. Figure 2-4 shows the squared difference between
the two datasets as a function of depth. The two datasets are consistent within the prior
error estimates. These error estimates consider the instrumental error in the dataset,
as well as errors in representation. Consistency between datasets, as shown here, is a

necessary condition to proceed.
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2 Errors: Levitus and Mooring Temperature
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Figure 2-4: The consistency of the Subduction Experiment mooring temperatures with
the Levitus climatology. The solid line with “X”’s is the prior error estimate in the
Levitus temperature climatology as a function of model level (level 23 is the surface,
and level 1 is the deepest level, 4900 meters). The solid line without “X”’s is the
standard deviation of the difference between the Subduction Experiment moorings and
the Levitus climatology. This line is generally to the left of the Levitus error estimate,
which is a statement of the statistical consistency of the dataset and the climatology.
Mooring data is only used in the upper ocean, levels 10-23.
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2.3 Initial and surface controls

Control parameters are boundary conditions, forcing, or model parameters which are
varied to control the trajectory of the solution. The term is borrowed from control
theory, and is sometimes shortened to controls. The choice of control parameters is
entirely up to the investigator. However, good controls share certain qualities. They are
parameters which are somewhat unknown. Also, the controls should be identifiable as a
major source of uncertainty in the model trajectory. A model is said to be controllable if
changes in one or all of the control variables is capable of driving the model to any point
in the permissible phase space (Dahleh and Diaz-Bobillo 1999). In an ocean model,
there are many unknown parameters and forcing fields, and they are likely capable
of controlling much of the model solution, although this has rarely been quantified
(Fukumori et al. 1993). For the Subduction Experiment model, we have chosen the

following control parameters:
o Initial Temperature and Salinity

Surface Heat Flux and Freshwater Flux

Meridional and Zonal Wind Stress

Open Boundary Temperature and Salinity

Open Boundary Normal and Tangential Velocity

There are 5,493,537 control variables.

2.3.1 Initial conditions

A properly-posed model integration requires the specification of the entire initial state.
The initial state is relatively unknown and yet makes a huge impact on the model
results over a one year time period. In our case, the initial density field, comprised of
temperature and salinity fields, has a dominant effect on the early stages of the model

integration and its elements will be chosen as control variables. The initial velocity
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field is not explicitly controlled, but comes into equilibrium with the initial density in a
few days through geostrophic adjustment. A second reason to adjust the initial density
field is our relative lack of knowledge of it. The Levitus climatology could be used for
the initial density field, but it does not include any effects of the mesoscale eddy field
or the interannual variability. A better initial density field is the ECCO (Estimating
the Climate and Circulation of the Ocean) 2° resolution state estimate (Stammer et al.
2002). We will use this improved global field, then improve the initial conditions once

again with the regional model.

To keep the adjustments to the initial conditions within a physically reasonable

range, we will add penalty terms to the cost function:

(TO - TOECCO )T W;"o (TO - TOECCO) (2-10)
-+ (SO - SOEcco)T WTS'O (SO - SOECCO) (2'11)

where Ty and Sy are the initial model temperature and salinity, Togoco and Spgeeo are
the ECCO 2° state estimate for temperature and salinity interpolated onto 1/6° for the
same time, W3, and W, are weighting matrices with nondiagonality marked by a star,

" "
*

The ECCO state estimate does not have a formal error estimate, but it is undoubt-
edly a better estimate of the initial conditions than the Levitus climatology. For this
study, a conservative assumption is that the uncertainty is equal to that of the Levitus
climatology. Therefore, the diagonal elements of W7, are identical t0 Wrey. The non-
diagonal elements of this matrix are outlined below. A correlation length scale of 200
kilometers, used here, is a conservative choice relative to the peak of atmospheric en-
ergy in longer wavelengths (~ 1,000 km) (Peixoto and Oort 1992; Kalnay and coauthors
1996). However, recent scatterometer measurements (Chelton et al. 2001) show small-
scale shifts in the winds over the Pacific cold tongue, so the correlation lengthscale may
indeed be quite small in select regions over the open ocean. Further thought is necessary

to provide more accurate atmospheric statistics. Isotropy is a good assumption in this
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region away from boundary currents. The weights on the initial conditions therefore

allow the addition of a mesoscale eddy field with the proper lengthscales.

Nondiagonal weighting matrices

Noisy control adjustments lead this study to implement nondiagonal weighting matrices.
The controls have nondiagonal weight matrices here, because small-scale, unphysical
features which represent model error should be repressed. Nondiagonal weights penalize
noisy features because they require the fields to spatially covary. Small-scale structures

in the control parameters are thereby eliminated.

Theoretically, the best nondiagonal matrix is the inverse of the error covariance
matrix (Lorenc 1986). Unfortunately, the off-diagonal elements of the matrix are very
poorly known a priori. Also, inversion of such a large matrix is not computationally
feasible. Instead, we follow an approximate approach which follows the discussion in
Lea (2001, Ph. D. thesis, p. 114) and Bennett (2002). For a vector u made of a

two-dimensional scalar field, they showed
u? Wy u+ (V2u)? W, (V2u) ®u’ Bl u (2.12)

where W, and W are diagonal matrices, but B~ is a nondiagonal matrix. For properly

chosen diagonals in Wy and W1, B! can be made such that B is nearly a Gaussian

covariance matrix,

1 |I'1 - l‘2|2
B(r;,r;) = Var(z, Y1) exp(—ﬁ—-l—?—)’ (2.13)

which represents the covariance between points ry = (z1,%1) and rp = (z2, y2). The cor-
relation lengthscale for the Gaussian covariance is 200 km for all the control parameters
because of the large characteristic scales of the atmosphere. In summary, the addition of
a smoothness constraint of the form of Equation (2.12) mimics a nondiagonal weighting

matrix with a chosen Gaussian correlation lengthscale.
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2.3.2 Surface forcing fields

Wind stress, heat flux, and freshwater flux are the driving forces of the ocean circulation.
The first guess for the controls is the daily and twice-daily NCEP Reanalysis fields
(Kalnay and coauthors 1996). The individual control adjustments are perturbations
applied to the NCEP Reanalysis over a 10-day period.

The penalty for adjusting the surface forcing controls is added to the cost function

Equation (2.1h)-(2.1k):

5 (Te =~ Tanees)” Wi, (T = Tanees) (2.14)
+ = (Fy - ?yncep)T Wi (Ty— T yncen) (2.15)
+ ¥¥ (He - Hp,..,)” Wi, (Ho - Ho...,) (2.16)
+ ¥ (Hr -Hp,.,)T Wy, Hr—Hg,.,) (2.17)

where 7, and 7, are the zonal and meridional windstresses, Hq and Hp are heat
fluxes and freshwater luxes, Tz,..,> Tynceps Hneer 80d Hr,.., are the respective NCEP
Reanalysis fields, and W* represents nondiagonal weighting matrices for each variable
type.

There is a lack of information about the daily wind stress, heat flux, and freshwater
flux over the open ocean. A simple comparison of different wind products reveals strong
biases and systematic errors of 35—50% in the Subduction Experiment region (Moyer and
Weller 1995). Therefore, the controls are allowed to change by the variance of the NCEP
fields. The weighting matrices reflect this choice and vary spatially. The nondiagonal

elements of the weighting matrices are handled as discussed in Section 2.3.1.

2.4 Open boundary control and estimation

A regional ocean simulation can only be completed with an additional source of informa-
tion: the open boundaries. The open boundary conditions fundamentally influence the

interior solution of the model. Simple changes in boundary conditions cause large differ-
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ences in the interior circulation; for example, slip and no-slip conditions completely affect
the circulation of an ideal gyre [(Pedlosky 1996), p.76; Adcroft and Marshall (1998); G.
lerley and W. Young, personal communication]. The open boundary state can control
the circulation to a greater extent. In addition, the proper open boundary conditions are
very uncertain. Unlike temperature and salinity, no climatology of open-ocean velocities
exists. Open boundary conditions are ideal control variables; they influence the model
profoundly yet they are relatively unknown.

Open boundaries control the solution of a regional model to a great extent, as will
be further shown in Section 3.5.3. Because the open boundaries affect the interior of
an ocean model, observations in the interior conversely convey some information about
the correct open boundaries. In principle, this allows an investigator to estimate open
boundary conditions which are realistic, not just boundary conditions which yield a
realistic interior. In this thesis, the goal will be both control of the interior through the

open boundaries, and estimation of realistic open boundary conditions.

Review of open boundary estimation

A review of the oceanographic literature finds no universally-accepted method for control
or estimation of open boundary conditions with a primitive equation model. Almost all
previous studies have used simplified versions of the equations of motions to study open
boundaries (Chareney et al. 1950; Robinson and Haidvogel 1980; Bennett and Kloeden
1981; Gunson and Malanotte-Rizzoli 1996a.b). With the quasi-geostrophic equations,
for instance, open boundary conditions were successfully nudged toward desired results
(Malanotte-Rizzoli and Holland 1986). Nudging is undesirable for the present research
because it is dynamically inconsistent with the physics of the ocean and it also com-
prehensively removes a whole range of the wavenumber spectrum.. Soon thereafter,
Schréter et al. (1993) used an artificial recirculation zone surrounded by walls to sim-
ulate and control open boundaries. Seiler (1993) estimated open boundary conditions

with a quasi-geostrophic ocean box model and its complementary adjoint model®. The

6 Adjoint models are detailed in Section 3.2.
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technical experience gleaned from the simplified equations of motion was applied to a
primitive equation model only recently (Zhang and Marotzke 1999; Ferron and Marotzke
2003).

Two major difficulties have confronted previous attempts to control and estimate
open boundary conditions in a primitive equation model. One, estimated open boundary
conditions frequently are not physically reasonable. Zhang and Marotzke (1999) took
a first look at this problem. Two, open boundary estimation is often very inefficient
when many other control variables are present. Ferron and Marotzke (2002) resorted
to a process that separately estimated open boundary conditions after other control
variables had been optimized. In the next sections, this thesis offers two novel approaches

to remedy the problems first seen by previous investigators.

Physical constraints on the open boundaries

Reasonable open boundary conditions have a few general characteristics: interior-boundary
consistency, geostrophic balance, and nearly vanishing net volume flux. Open boundary
estimation is formulated here with many additional constraints, which leads to an ex-
tension of the technique devised by Zhang and Marotzke (1999). A hard constraint is an
equation that must be satisfied exactly; the model equation (Equation (3.2)) represents
the collection of all hard constraints. A soft constraint is an equation that need not
be satisfied exactly, but its inequality is penalized in the cost function. Therefore, soft

constraints are satisfied with an arbitrary precision determined by their weight.

Open boundary control with the primitive equations

The boundary conditions in the GCM require the complete specification of the state:
temperature, salinity, meridional and zonal velocity (see Appendix A). The first-guess
boundary conditions are from the ECCO 2° state estimate. There are very few choices
for a time-varying open ocean velocity field to be used for this purpose. The ECCO
estimate is interpolated up to 1'/6° and varies monthly. Likewise, we will allow the

adjustments to the boundary conditions to occur monthly; hence there are 12 sets of

59




adjustments for one year.

The penalty for adjusting the open boundary conditions is:

S (Tos. — Tobpoco)” W, (Tos = Tobpeco) (2.18)
+  T%(Sos — So.bAEcco)T Ws,,. (Sob. ~ Sob.scco) (2.19)
+ 2(0os = Uobp000)” Wi (Ugp, — ~U.bsec0) (2.20)
+ TP (Uos = Uobzcco)” Wi (Uos. — Ulssipeco) (2.21)
+ P(Vos = Vabseco)” Wuie Voo = Vobpoco) (2.22)
+ %2(V,o b — Vios. ECCO)T WVLC (V’o.b. - Vlo.b.zcco) (2-23)
+ TP+ )T Wi, (Tt + () (2.24)
+ TRV TAL)T Weasie (Vi TAL) (2.25)

where ECCO refers to the ECCO state estimate, T, and S, are open boundary
temperature and salinity, U., and V., are depth-averaged or “barotropic” boundary
velocity, U',s and V' are the “baroclinic” velocity, V is the open boundary normal
velocity, 8p/dl is the gradient of density along the boundary, A,; is a vector of the
area of the open boundary grid-cell faces, and W refers to various diagonal weighting
matrices.

The weighting matrices serve different purposes for the various terms of the cost
function. For terms (2.18)-(2.19), we are using the ECCO state estimate as a first guess.
Similar to the rationale in Section 2.3.1, the open boundary temperature and salinity
will be given the same uncertainty as the Levitus fields. This is because the coarse
resolution ECCO boundary conditions once again do not include a mesoscale eddy field.
This is a conservative estimate of uncertainty because the ECCO state estimate was
computed for our particular year of interest, 1992-93, unlike the Levitus climatology. On
the other hand, very little is known about the uncertainty in open boundary velocities.
Instead of pleading complete ignorance, the weights in terms (2.20)-(2.23) constrain
the velocities to have an appropriate magnitude. The weights are split into barotropic

and baroclinic components because they obey different dynamics, and they need to
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be controlled separately. Term (2.24) is a penalty for open boundary velocities which
deviate from thermal wind balance (see Section 2.4.1). Finally, the net volume flux

(term 2.25) into the domain is expected to be nearly balanced (see Section 2.4.2).

2.4.1 Thermal wind balance

The velocity field is strongly coupled to the density field, and a reasonable estimate
should reflect this fact. The eastern subtropical gyre has a Rossby number of a.pprox—'
imately 0.1 and therefore the coupling is primarily explained by geostrophic balance.
Together with hydrostatic balance and the Boussinesq approximation, the thermal wind
equations state that the vertical velocity shear depends on horizontal density gradients

(Pond and Pickard 1983):

w_9o n__ od
52 " pfdy 92 pefls (2.26)

where u is velocity in the z direction, v is velocity in the y direction, g is gravity, f is the
Coriolis parameter, and py is a reference density. In the interior, the coupling is explicitly
calculated by the general circulation model. On the open boundary, the ocean state is
prescribed and does not necessarily follow the thermal wind equations. Unbalanced
open boundary conditions create spurious gravity waves which cause deterioration in
the boundary conditions’ ability to control the model interior in a believable way. The

estimation and control of open boundary conditions demand thermal wind balance.

Stevens’s method: a hard constraint

The ocean state on the open boundaries can be kept in geostrophic balance by mod-
ifying the model equations. Stevens (1991) solved for the baroclini¢ normal velocity
on the boundary by linearizing the momentum equation of a primitive equation model.
The linearized momentum equation reduced to thermal wind balance to first order. To
restate, only temperature and salinity were prescribed on the boundary and the baro-

clinic velocity was then diagnosed. The depth-integrated, or “barotropic”, velocity is an
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extra variable to be prescribed. Therefore, the open boundary normal velocity, v, , is

calculated
- _g.__ * _p_
vy(z) = of f <8l) dz + vg + Ut (2.27)

where H is ocean depth, [ is distance along the boundary, vg is an integration con-
stant, and vy, is the barotropic velocity. The integration constant is consistent with the

definition of the barotropic velocity as the depth-weighted average velocity:

1 0
U = /H v (2) dz. (2.28)

Two problems exist with this method. First, thermal wind balance should only
hold to the extent that geostrophic balance holds. The Rossby number for the eastern
subtropical gyre is 0.1, which means that the ageostrophic current is roughly 10% of the
geostrophic current. Furthermore, the mixed-layer and fronts have significantly larger
Rossby numbers and stronger ageostrophic currents. The open boundary velocity should
not exactly follow the geostrophic relation or else any information about the ageostrophic
flow will be lost. Second, the calculation of Equation (2.27) is noisy due to the horizontal
gradient. Zhang and Marotzke (1999) showed that practical implementation is frequently
corrupted by noise. Based on these results, another method to constrain the open

boundaries to thermal wind balance is sought.

Soft constraint method

The cost function can serve a dual purpose; not only can it constrain the model to
observations, it can penalize the model’s deviation from dynamical balance. A soft
constraint (see Section 2.4) is ideal for thermal wind balance on physical grounds because

it should not be satisfied perfectly. The extra term in the cost function is:

12 0V, g Op.r ovV', g Op
Z(—B;_ + 'p;'}’_aj‘) Wageos (——8—";— + ;;)7—7) (229)

t
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where the cost function is summed over 12 months, V', is a vector of the monthly-
averaged, open boundary normal baroclinic velocity, 0p/0l is a vector of the gradient
of density along the boundary, and W ge,s is a diagonal weighting matrix. The weights
are appropriate for a Rossby number of 0.1 below 100 meters depth, and are zero for
anything above 100 meters depth. Therefore, 10% of the magnitude of the velocity is
the expected error. In practice, the model easily conforms to this soft constraint because
the control variables completely control the size of this term. The use of soft constraints
reveals the power of the least-squares problem; our formulation here is easy to apply to

the previously-existing machinery and works well.

2.4.2 Estimating net volume flux

A convenient assumption is that the net mass flux into a region is perfectly zero, but
observations from tide gauges (Wunsch and Gill 1976) and the TOPEX/POSEIDON
altimeter (Stammer et al. 2000; Fu et al. 2001) do not always support this statement.
Waunsch and Gill (1976) showed large mass flux convergences in the tropical Pacific tide
gauge network. The TOPEX/POSEIDON altimeter mission showed surprisingly strong
barotropic motions at high latitudes with timescales of 1-10 days (Stammer et al. 2000).
The sea surface height variations due to these motions imply rapid, large-scale, depth-
integrated movements of water. Recently, a 25-day period, large-scale oscillation was
detected in the Argentine Basin (Fu et al. 2001). The wave could be explained by a basin
mode with a depth-integrated transport of 50 Sv. These observations all suggest that
there are timescales over which the net mass flux into a region of the ocean is nonzero.
Ideally, the domain-wide mass flux convergence would be an estimated quantity from
this thesis.

The distribution and movement of mass in the ocean is not understood fully. This
is illustrated by Munk’s (2003) assertion that global sea level rise can not be properly
attributed to either eustatic or steric effects. Recent measurements of the global sea
level trend (Munk 2002; Cazenave 2002) must be due to melting of land-bound ice

(eustatic effect) or due to the expansion of warmed seawater (steric effect), but our best
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estimates today are not capable of closing the budget. In a regional model, sea surface
height observations are affected primarily by two analogous effects: the heat content
of a column of water and the net influx of mass into the domain. If the net mass flux
into a region were fixed to zero, the information content of the sea surface observations
could be diminished or misinterpreted. Such concerns are probably not warranted in
the Subduction Experiment region, but it is still a good opportunity to prepare the

techniques for use in other regions.

In a Boussinesq model such as the MIT GCM, conservation of mass is exchanged for
conservation of volume because of an inconsistency between the equation of state and
the statement of nondivergent flow (Adcroft (1994), p.22). Ideally, the net volume flux

into a region is not fixed to zero,
][ V= H(l) di # 0, (2.30)
bdy

but large imbalances are not allowed either. In discrete space and time, an imbalanced,

i.e. nonzero, volume flux can be penalized by a soft constraint in the cost function:

ij:(vi TAL)T Wastsie (V1 TAL) (2.31)
where Vi is a vector of the depth-integrated velocity normal to the boundary, A;; is a
vector of the corresponding open boundary cross-sectional area, and W o 5.z is @ scalar
weight. The weight is determined by physical reasoning; a 50 Sv imbalance like that
reported by Fu et al. (2001) in the Argentine Basin could be considered an upper limit
on volume imbalance. In that case, W1z = 1/(50 Sv)?. Although 50 Sv seems like a

very large number, this amounts to only a 3 mm/s horizontal inflow around the domain

of the model. The addition of a soft constraint is a necessary step for any volume flux

convergence estimates.




Ill-conditioning of the volume flux estimation problem

Estimating volume flux is difficult even with a linear system because of the physical
processes involved and the associated mathematical ill-conditioning. A toy channel
model with only two control parameters already displays the ill-conditioning. Consider
a steady, rotating, zonal channel with constant inflow and outflow (Figure 2-5). The
mean sea surface height trend in the channel and the meridional sea surface slope in
the center of the channel are observed; these two quantities could be derived from
TOPEX/POSEIDON satellite altimetry fields. The goal is to estimate the inflow and
outflow of water into the channel. An imbalance of inflow and outflow makes a mean

sea surface height trend due to the conservation of volume:

dn = éﬁ(uwt - Uip) (2.32)
&~ A,

where A,, is the sea surface area, A, is the cross-sectional area of the channel, and u
is velocity in the zonal direction. The meridional sea surface slope is also observed; it is

related to the channel velocity by geostrophic and hydrostatic balance:

d_fp_ 1
g 9

(uo'u.t + uin)
dy : (2.33)

2

In this example, the problem is linear. In matrix form, the problem is restated:
_Azy  As , L:47}
i 4 Uout ny &

Knowledge of the right hand side can be used to invert for the flow field. However,
this matrix is ill-conditioned in most oceanographic applications because of the values
of the physical constants. For the Subduction Experiment model, j—:}j is roughly 1000,
and -2% is approximately 5 x 107% m~1. Inversion of the matrix will lead to large errors

because it is nearly singular (Strang 1996). A common strategy to better condition the
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Idealized Channel

n=constant
> m=constant
in out

—
.
Figure 2-5: Schematic of idealized channel. Uniform and constant velocity enters and

leaves the channel, which leads to a zonally uniform sea surface height under geostrophy.
Any difference between the volume influx and outflux makes the mean sea surface height

change with time.

matrix is row scaling, as discussed by Wunsch (1996, p. 121); however, the rows in this
problem have already been scaled by the observational accuracy, n; and np, which is
nearly equal in both rows. A second approach is column scaling; this recognizes that
there is information in the expected solution covariance, R,,. The solution must reflect
that the inflow and outflow are negatively correlated to conserve volume. Rescaling and

rotating the input and output velocities,

Usin/ Uin

=R : (2.35)
Uout! Uout

makes Equation (2.34) well-conditioned and easily invertible. Column scaling makes

explicit the expectation that the difference between inflow and outfiow is small.

Application to the general circulation model

In the general circulation model, ill-conditioning of the optimization is eliminated by
nondimensionalization of the open boundary velocity controls, which is equivalent to
the column scaling method above. For the GCM, nondimensionalization is numerically
implemented term-by-term, which is analogous to a diagonal R, because large matrix
multiplication is not possible. Unfortunately, a diagonal matrix does not resolve the ill-

conditioning, because of the strong covariance between inflow and outflow. To resolve the
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problem, the control parameters are re-chosen; this amounts to a rotation and rescaling
of the controls. Originally, the barotropic normal velocities around the domain was
chosen as the control parameters. Instead, one may add the domain-averaged imbalanced

velocity as a control parameter itself. Then, the normal velocity has three components:
Vi(z,2) = Vecco(®, 2) + Ver(2) + Vimbatance (2.36)

where Vgeoco is the first-guess barotropic velocity from the ECCO global state estimate,
Vj: is the barotropic control adjustment, and Vimpalance is another barotropic control
adjustment which is evenly applied to all boundary points. In this particular form,
the controls do not specify a unique open boundary velocity field because Vimpaiance
can compensate for changes in Vj;. For uniqueness, a hard constraint” is added to the

original barotropic control adjustments:
£ v HO) @i=o0, (2.37)
bdy

the original barotropic adjustments are the domain-balanced part of the total barotropic
adjustments. With this formulation of the problem, the net volume flux is estimated
without a problem in the general cireulation model.

In many of the early results of this thesis, the general circulation model is run with
a hard constraint on the net volume flux. The constraint of zero net volume flux is
appended to the model equations (Equation (3.2)). For the Subduction Experiment
region, the estimated volume flux into the basin is nearly zero anyway, so the early

results with a hard constraint are not significantly altered from later results.

2.5 Chapter summary

The observations of the Subduction Experiment do not provide enough coverage to

adequately form budgets and analyze dynamical balances of the mesoscale ocean cir-

"The actual implementation is a discrete sum, but the meaning is more easily seen in the continuous
formulation.
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culation. Here, a combination of the observations with a state-of-the-art, 1/6° ocean
general circulation model provides an estimate that has sufficient resolution in time and
space. The concept is to find a model trajectory that fits the observations within their
uncertainties. The cost function unambiguously describes the “goodness” of a partic-
ular model trajectory; it is the squared misfit between the model and the Subduction
Experiment moorings and the TOPEX/POSEIDON satellite altimeter (as well as many
other terms). The model trajectory is controlled by varying uncertain model parameters:
the initial conditions, the surface forcing, and the open boundary conditions. Despite

the high complexity, the combination of a model and observations here is just a large

least-squares problem.




Chapter 3

Eddy-Resolving State Estimation

3.1 Overview of chapter

The search for an eddy-resolving model trajectory that fits observations is a challenge
due to the nonlinear nature of the model itself. The method of Lagrange multipliers
(Section 3.2) uses the gradient of the cost function to search for a model trajectory
within the uncertainty of observations, but will the gradients derived from a nonlinear,
eddy-resolving ocean model be useful? Nonlinear models potentially produce multiple
stationary points in the cost function, and gradient-search methods may have difficulty
in finding a solution to the least-squares problem. For example, optimization studies
with geostrophic turbulence models (Tanguay et al. 1995) and basin-wide ocean models
(Lea et al. 2000; Kohl and Willebrand 2003) converged to local minima that were not
the true solution. In addition, ocean models have thresholds and switches which are
further examples of nonlinearity. Local gradients do not give any information about
thresholds, and may miss important features of the dynamies.

Despite these concerns, the intrinsic dynamics of the realistic eastern subtropical
gyre model used here are more linear than the extreme models of previous studies that
gave problematic results. A large supply of data (as shown on Page 43) and an excellent
first guess of the controls from a coarse resolution model promise to help the search for

a viable state estimate here. Under these conditions, the gradients of the eddy-resolving
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primitive equation ocean model do help find a consistent solution between model and
data for the eastern subtropical gyre. In the process of finding the model estimate,
the dynamical behavior of the eddy-resolving model is quantified, with implications for
predictability of the ocean. The final product of this chapter is an eddy-resolving state

estimate to be used in Chapter 4 for the study of subduction.

3.2 Method of Lagrange multipliers

The method of Lagrange multipliers solves a constrained least-squares problem and is
shown to be a logical choice for ocean state estimation. Although the term Lagrange
multiplier is familiar to physicists, the method has been called many other names, most
notably the adjoint method (Hall et al. 1982; Thacker and Long 1988; Tziperman and
Thacker 1989), the Pontryagin Principle (Wunsch 1996), and 4D-Var (LeDimet and
Talagrand 1986; Talagrand 1997). The method is well-suited for oceanographic datasets
where all the measurements have been collected and compiled. Then, the data can
be used all at once — a whole domain approach (Figure 3-1). The method of Lagrange
multipliers also saves computation; large covariance matrices are not calculated. Another
feature is the utility of intermediate results; sensitivity information is a by-product of
the optimization problem. The method of Lagrange multipliers is therefore an attractive

choice for solving the ocean state estimation problem.

The method is potentially limited by strong nonlinearity in the model, the lack of
uncertainty information, and the difficulty of hand-coding an adjoint model. Here, the
goal is to extend the method to nonlinear systems. The lack of uncertainty information
has been remedied in small-dimensional systems by use of the Hessian matriz (Thacker
1989). In addition, the adjoint of the MIT GCM is obtained with relative ease through an
adjoint translator (Giering and Kaminski 1998). In hindsight, the traditional limitations
of the method of Lagrange multipliers do not deter the investigation here; in fact, some

of the drawbacks serve as motivation.
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Figure 3-1: Pictorial view of two state estimation techniques. The method of Lagrange
multipliers (top) is a whole-domain method used in this thesis. Whole-domain methods
use observations over the entire time domain at once to fit the model. A more detailed
picture of whole domain state estimation is given in Figure 2-1. In contrast, the Kalman
Filter (bottom) is a sequential method which uses observations in sequential steps and
incorporates incoming data. The Kalman Filter/Smoother (not pictured) improves the
Kalman Filter solution, yielding the same solution as the method of Lagrange multipliers
in a linear system. The Kalman Filter/Smoother is both a sequential and whole-domain
method. From Giering and Kaminski (1998).

71




3.2.1 Appending Lagrange multipliers

The method of Lagrange multipliers finds a least-squares solution subject to a constraint.
Mathematically, the method works by appending extra terms to the cost function. The
original, constrained optimization problem! is transformed into an unconstrained one
where special structure inherent in the equations allows efficient solution techniques. For
example, a generic and condensed cost function is minimized using Lagrange multipliers

below.

The goal is restated:

minimize J =2 [E)x(t) -y )T W(t) [E@)x(t) - y ()]
+ TS u®)T Q) u(t) (3.1)

subject to the constraint x(t + 1) = L[x(t), Bq(t), Tu(t)] (3.2)

vx'rhere x(t) is the state vector of temperature, salinity, and velocity,

y(t) is the observations and E(t)x(t) is the model estimate of those observations,

u(t) is the control vector of external forcing and boundary conditions,

Tu(¢) is the effect of control adjustments and model error on the model trajectory,

Baq(t) is the known forcing,

L represents the nonlinear model operator,

and W (t) and Q(¢t) are weighting matrices.

The time units have been nondimensionalized so that the timestep is one unit, At = 1.
The first term of the cost function is the squared misfit between model and observa-

tions. To relate this to Chapter 2, this generic term subsumes the first eight terms of the

cost function, (2.1a-2.1g). The second term bounds the size of the control terms, which

represent unknown boundary conditions, surface forcing errors, and model error. This

term is a succinct way of writing terms (2.1h)-(2.1q) of the cost function. (Terms (2.1r)-

(2.1s) have no analogue in the present example, but the mathematics would follow in a

10ptimization and minimization are used interchangeably. Optimization is 2 more general term
encompassing both maximization and minimization problems.
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similar way.) The constraint is the nonlinear model. For all minima of the cost function,
8J/8x(t) and 8J /Au(t) vanish. For a state of size M and controls of size N, M+N equa-
tions need to be satisfied (8J/0x;(t) =0, 1 <4 < M, and 8J/8ux(t) =0, 1< k < N).
However, the state vector, x(t), directly depends on the control vector, u(t), by the
model dynamics. Now, less than M + N independent variables are available to satisfy
the M + N constraints for a minimum. This overdetermined system typically does not
have a solution for arbitrary x(t) and u(t) because the model constraint is violated.
Instead, the solution method should search for a stationary point while simultaneously

satisfying the model constraint.

In the late 1700’s, the Italian-French mathematician Lagrange suggested appending
new terms to the cost function to solve the constrained minimization problem. Following

his advice, the new function is

J =Yl [B@)x(E) - y®)ITW() [E@)x(t) - y(@)]
+500 u)TQ)u(t)
— vl pE+1)T{x(t+ 1) — L[x(t), Bq(t), Tu(t)]} (3.3)

where p(t) is a vector of Lagrange multipliers. The number of Lagrange multipliers,
M, is equal to the size of the state. For every state variable, there is a corresponding
Lagrange multiplier. In this form, the appended cost function is sometimes called the
Lagrangian function, in analogy to classical mechanics. The last term is always zero
if the model constraint holds, so the numerical value of the appended cost function is
the same as the original cost function. The Lagrange multiplier term is appended as a
mathematical device so that all the variables, x(t), u(t), and now u(t), can be treated
as independent variables (Strang 1996). This works because the Lagrange multipliers
take values that make the partial derivatives (8J/8x;(t), 1 <4 < M) vanish. The un-
derlying mathematical machinery exploits the explicit relationship between the controls
and state, as embodied in the forward model. If there are NV controls, the original con-

strained minimization problem in the space of the state and the controls had dimension
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M + N. The Lagrange multipliers reduce the problem to an unconstrained minimization
problem of dimension N in the space of the controls alone.

After resolving the dependency between the controls and the state, all derivatives of
the cost function all must independently equal zero for the constrained minimum. Taking
these three sets of derivatives yields the three sets of normal equations (the analogue of

the continuous-time Euler-Lagrange equations (LeDimet and Talagrand 1986)):

8J
) x(t+1) = L[x(t), Bq(t), Tu(t)] (3.4)
5%(% u(t) = (ax@) pt+1) +E@)T W(t) [E@)x(t) —y(®)] (3.5)
% =0= u(t) = -Qt) (58;) T7u(t+1) (3.6)

The first equation is the nonlinear model, the MIT GCM in this project. The second
equation is the adjoint model. In this equation, the transpose of the tangent linear
model (to be defined in Section 3.3.1) acts upon the Lagrange multiplier vector. The
model-observation misfit, E(¢)x(t) — y(¢), forces the adjoint model. The third equation
relates the Lagrange multipliers and the controls. Recently, the study of the set of
normal equations has been popularly called adjoint modeling. Considering all three sets
of equations, there are 2M + N equations and 2M + N unknowns. Mathematically, this
is a formally just-posed problem. In the case of linear constraints, solution is possible
by matrix inversion — except for the large dimension of the problem. In any case,
the method of Lagrange multipliers explicitly accounts for all constraints, and provides

machinery to find a constrained minimum.

3.2.2 Solution method for the normal equations

For nonlinear constraints, the normal equations (3.4)-(3.6) are not directly solvable, but

their special structure can be exploited. One procedure, used in this thesis, is:

e 1) Forward sweep. Make a first guess of the controls, usually u®(t) = 0,

and use the forward model (3.4) to get a first estimate of the state, x(©(t) (the
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superscript (0) refers to the first-guess trajectory that evolves through time). If
the misfit between the model and observations is within the expected error, the

model trajectory is the state estimate. Otherwise, proceed to item 2.

e 2) Backward sweep. Ex(®(t) — y(t) can be evaluated and used to drive the
adjoint model (3.5). Use u(t; + 1) = 0 as the initial conditions to the adjoint
model because no observations are present after t;. Integrate backwards in time

(as detailed in Section 3.2.3 below).

e 3) Update controls. Unless u(t) = 0 for all times ¢, the third set of normal
equations (3.6) will not be satisfied. p(t) = 0 is not desirable, because then the
model fits the observations exactly, which is not reasonable for observations with
noise. Instead, use Equation (3.6) to give a new estimate, u™(¢) (to be explained

in detail in Section 3.2.4). Return to item 1 and iterate the procedure.

3.2.3 Adjoint model integration

Step 2 above shows that the adjoint model can be integrated backwards in time when
given the initial conditions, p(t; + 1) = 0. During the adjoint integration, the forward
model trajectory is needed, but in reverse order. The transpose of the tangent linear
model is linearized about the forward model state, as seen in (3.5). The time-evolving
forward model state, however, is too large to be stored in memory at once. Checkpointing
schemes are an efficient numerical tool for recalculating the forward model trajectory
during an adjoint model run (Griewank and Walther 2000). At evenly-spaced checkpoint
times, the forward model state is saved to disk for use in the adjoint model. In this way,
neighboring forward model states can be recalculated with a short model run instead of
the full model run from the initial time. Checkpointing works as a tradeoff that reduces
memory requirements by adding computation. This technical advance from computer

science makes the solution method of Section 3.2.2 possible.
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3.2.4 Gradient descent

The third step above, “update controls”, is not nearly as straightforward as previ-
ously presented; in fact, whole textbooks have been written on the subject of opti-
mization theory (Luenberger 1984; Gill et al. 1986). To review, the problem here is
analogous to navigating a mountain range and looking for the deepest hole (but in a
many million-dimensional space!). The method of Lagrange multipliers calculates a gra-
dient, 8J/0u(t), to help search the control space. Is this a computationally efficient way
to find a solution? The answer is apparent after comparing search methods which do
not use gradients, and those that do.

Methods that do not use gradients, such as simulated annealing (Metropolis et al.
1953; Press et al. 1992 p. 443; Barth and Wunsch 1990) and the simplex method
(Dantzig et al. 1955), have been used for many years with success. Genetic algorithms
(Holland 1975; Davis 1991), another class of search methods, promise to improve the
performance of non-gradient optimization methods, but they have rarely been tested in
oceanographic applications (Barth 1992; Hernandez et al. 1995). How many forward
model runs are necessary to find a solution with these non-gradient methods? In the
region of a minimum in control space, the least-squares form of the cost function gives

a quasi-parabolic topology,
J(u) ~ u"BTBu-glu+c (8.7

This assumption is proved in Section 3.3.1 with a linear model. The number of param-
eters that describe the shape of J is equal to the number of free parameters? in the
matrix B, the vector g, and the scalar ¢, which is NV 24+ N +1 when N is the number of
control variables. All of these parameters can change the location of the minimum. In a
worst case scenario, O(N?) pieces of information must be collected. This could be done
by N2 forward model integrations. For our case, it is impractical to run the forward

model that many times.

2Precise accounting yields (1/2)N (N + 1) parameters. Because BTB is positive definite, B is an
upper-triangular matrix by the Cholesky decomposition.
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Gradient Search Methods

—

Control 2

Control 1

Figure 3-2: A schematic of a paraboloidal cost function topology with respect to two
control directions in phase space. For an anisotropic paraboloid, contour lines of con-
stant cost function trace an ellipse (thin lines, “J-isolines”). In this case, the direction
perpendicular to the J-isolines (Steepest Direction) no longer points to the minimum.
Using information from second derivatives, the direction to the minimum is calculated
(Newton Direction).

Knowledge of the gradient increases the efficiency of a search algorithm and makes
large-dimensional optimization possible. In contrast to the forward model, each integra-
tion of the adjoint model yields N independent pieces of information that help in the
search for a minimum. The gradient of the cost function is a vector in N dimensions.
As long as the adjoint model can be computed with less cost than N forward model
integrations, the gradient gives a great amount of guidance in optimization, without an
inordinate number of forward model integrations. In the case at hand, the adjoint of the
MIT GCM calculates the gradient with a computational cost of six forward model in-
tegrations. In large-dimensional problems, calculation of the gradients from the adjoint
model makes optimization possible.

A naive search would simply change the controls in the direction given by the gra-
dient, but better gradient descent (or direction set) methods have been discovered. The
method of steepest descent described by Press et al. (1992) “greedily” adjusts the
controls in the direction of the gradient. This method is plagued by difficulties when

“parrow valleys” are present; that is, when partial derivatives are very nearly zero in
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some directions, but very large in others. The method always finds the local mini-
mum, but it inefficiently searches in a zig-zag path near the bottom of a valley (see
Press et al. (1992), Fig. 10.5.1, p. 407). Quasi-Newton methods® are superior because
they take the second derivative, or curvature, into account. Suppose a cost function
is well-approximated by Equation (3.7) and a first guess of the controls u(®. With an
evaluation of the cost function and gradient at u®, the underlying topology of the cost

function is approximated by:
J(u) = Ju®) + VJu®)(u - u®) + (u - u®)TBTB(u — u?). (3.8)
The gradient of Equation (3.8) gives
VJ(u) = VJu®) + 2B7B(u — u?). (3.9)

The local stationary point occurs where the gradient is zero. Therefore, the direction of

the minimum is actually
(uMN) _ 4@ = —%(BTB)“IVJ(u(O) ) (3.10)

where the steepest descent direction V.J(u(®) is modified by (BTB)~? (Figure 3-2). This
matrix is usually called the Hessian, H = (BTB)™!, and it contains second-derivative
information. The variable storage quasi-Newton method of Gilbert and Lémarechal
(1989) uses differences of the first derivatives to form an approximate Hessian. Hence,
the storage of the Hessian is done without large use of computer memory. In summary, ‘
the variable storage quasi-Newton search accounts for many lessons learned in optimiza-
tion theory, yet is computationally feasible for large problems. Gradient search using

the method of Gilbert and Lémarechal (1989) is used in this thesis.

3Quasi-Newton methods are a type of variable metric optimization method which only approximates
the Hessian matrix.
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3.2.5 Interpretation of Lagrange multipliers

The Lagrange multipliers serve two completely different purposes; they are useful for
optimization problems as shown above, but they also have a physical interpretation.

The partial derivative of Equation (3.3) with respect to u gives:

87 _(az:

T
0] 3(I‘u)> 7 p(t+1). (3.11)

From this equation, the Lagrange multipliers give the gradient of the cost function with
respect to the control variables. In an optimization context (like most of this thesis), J
includes the data-model misfit, and hence, the Lagrange multipliers give the direction to
change the controls in order to minimize J. This is the underlying principle behind the
“update controls” step above. In this case, the Lagrange multipliers are directly related
to the gradient that is used for optimization. Another fundamental equation relates the
Lagrange multipliers to the gradient of the cost function with respect to the state (see
Appendix B).

In addition to optimization applications, Lagrange multipliers supplement the dy-
namical understanding of a model. In cases where J represents a physical quantity, the
form of Equation (3.11) will differ, but the Lagrange multipliers still give the gradient of
the cost function with respect to various parameters. The Lagrange multipliers therefore
represent sensitivity (Hall et al. 1982; Schroter and Wunsch 1986). This sensitivity has
a physical significance in its own right and has been used to interpret the physics of the
ocean (Marotzke et al. 1999; Bugnion 2001; Hill et al. 2004). The double nature of the
Lagrange multipliers is an added benefit of the method.

3.3 Model dynamics and optimization

Model dynamics affect the shape of the cost function in control space through the model-
data misfit, the first term in the generic cost function (Equation (3.1)). In the case of a

linear model, the least-squares formulation has a global parabolic shape, as previously
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assumed (see Equation (3.7)). More complicated shapes emerge when the model pre-
dictions, Ex(t), depend nonlinearly on the controls, u(t). Some cost function topologies
make the search for a minimum more difficult, usually because the gradient with respect
to the controls has little use. The emergence of many local minima in a cost function is
one troublesome scenario, as gradient search methods do not distinguish between local
and global minima. In previous studies (Lea et al. 2000; K6hl and Willebrand 2002),
eddy-resolving ocean models based on the nonlinear equations of motion gave rise to
many local minima. Models with thresholds are another example of nonlinearity. Gra-
dients give a local measure of the cost function shape, but may not be accurate when
extrapolated to a finite region of phase space with a dynamical regime change. In sum-
mary, the difficulties of nonlinear optimization are due to the model dynamics; specific

cases are illustrated here, and then compared to the general circulation model problem.

3.3.1 Linear versus nonlinear models

In this section, the recovery or initialization problem of control theory is used to illustrate
how the cost function shape differs when computed with a nonlinear model versus a linear
model. Consider the goal of estimating the initial model state given one observation of
the state at a later time. Successful recovery of the initial conditions depends on the
length of time between the observation and the requested estimate, t; — to. The results
of this sample problem can be generalized to the case with many observations; hence, the
arguments presented below are applicable and relevant to a wider variety of situations.

The problem is restated as a least-squares minimization of the function:
J = [x(ts) — x(@)]T W(ts) [x(t5) — x*(t5)], (3.12)

where x(t) is the model state, x°(t) is an observation of the state, and W(ty) is a
weighting matrix. If all the observations are independent and weighted equally, W (t)
is the identity matrix; for simplicity, we take this approach and drop W{(ts) hereafter.

The problem is solved by searching over the possible initial states. Therefore, knowl-
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edge of the dependence of J on the initial state, Xq, is required. The model is part of

this dependence:
x(ts) = Ly o...0 Ly 0 Ly 0x(to) = R(ts, %) X(to) (3.13)

where n is the number of model timesteps between the initial and final time, o is the
composition operator, and the resolvent, R(¢s,1o), is shorthand for the string of possibly-

nonlinear model steps. In the unconstrained search space, the cost function is now:
Tix(to)) = [R(ts, to) x(to) —x**(t)]” [R5, %) x(to) — x**(t1)], (3.14)

There is a model trajectory that gives the minimum of J : the initial state of this tra-
jectory is designated x*(to). In the case of a perfect model and observation, the model

with initial condition x*(to) exactly predicts the observation:
x%(t5) = R(ts, to) X*(to)- (3.15)
The perfect model-data assumption clarifies the discussion, but is not necessary. Next,

we wish to find the shape of the cost function around the minimum.

Before proceeding, the tangent linear model is defined. A perturbed nonlinear model

trajectory can be integrated with the formula (Miller et al. 1994):

2
Lx(t) + x(t)] = L[x(t)] + (g{%) 6x(t) + ox(t)T [ﬁ%} ox(t)+..., (3.16)

where the second-order term contains a third-order tensor. Subtracting the baseline
nonlinear model trajectory and neglecting terms higher than order one, a perturbation

to the state, 6x(t), follows the dynamics of the so-called tangent linear model:

Sx(t+1) = (ﬁ%) 5x(2). (3.17)

The matrix, dL/8x(t), is sometimes called the Jacobian matrix. It is formed by the
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derivatives of the nonlinear equations, £, Lo, etc., with respect to the state:

8L1/0x1(t) OL1/O%a(t) ... OL1/O%m(t)

(_?_/;_): 0Ly /8% (t) OLy/Oxa(t) ... OLy/Oxn(1)

ey (3.18)

0Ly 0%1(t) OLm/[8%2(t) ... OLp/0%n(t) x(?)

The model is always re-linearized about the changing model state, explicitly noted by
the subscript x(t). Extending over many time steps, the final perturbation is related to

the initial perturbation by
5X(tf) = R(tf, to) 5X(t0), (319)

where R is a linear resolvent made of a string of linear matrix multiplications. The
validity of the tangent linear model to approximate the nonlinear dynamics is addressed

more fully below.

The cost function, Equation (3.14), reduces to a quadratic form for linear models

or for nonlinear models well-approximated by a tangent linear model (Figure 3-3, left

side).

T (to) + 6x(to)] = [Roty,to) ox(to)]” [R(ts,10) x(to)] (3.20)
= 6x(to)” Rlts,to) Rty o) 6x(to) (3.21)

In contrast, the cost function is no longer globally quadratic and many local minima
appear when the tangent linear model fails to well-approximate the nonlinear model. In
that case, perturbations to the initial state are influenced by higher order terms. The

cost function topology around the minimum is not purely quadratic:-
j[x* (to) + JX(tQ)] = 5X(t0)T R(tf, to)TR(tf, to) 5X(t0) -+ 0(6X(t0)2m) (322)

where m includes integers greater than one. Higher order terms destroy the parabolic

nature of the function, and the original minimum is not necessarily unique. As seen in
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this generic example, nonlinearity in a model is responsible for local minima.

Form of the Cost Function: Linear vs. Nonlinear

1 4 v v
NONLINEAR MODEL
d=(y0p-Xops) ~=(U)"+ (U

12

10F

LINEAR MODEL
I=tyop~Xops) ~=(V)*

J, the Cost Function
)

4 6
U, the Control Variable

Figure 3-3: Schematic of the cost function with a linear versus nonlinear model. The lin-
ear model (left) gives a cost function with paraboloidal shape because of the least-squares
formulation. A nonlinear model (right) potentially gives a much more complicated shape;
discontinuities and multiple local minima are possible.

The preceding section hints at the role of model dynamics in the least-squares prob-
lem. Specifically, a nonlinear model can distort the simple, parabolic form of the sum
of squares. However, the results of the previous section are strengthened by considering
the physics of a simple dynamical system. The pendulum is chosen for study because it
can be implemented as a nonlinear or linear set of equations, and it can also be stable,

unstable, or chaotic.

3.3.2 Case study: Single pendulum

Is it possible to determine the angle and velocity of a pendulum at initial time with one
observation at a later time? Like the previous section, this is a statement of the recovery
problem of control theory. The simple formulation of this problem isolates the effect

of the model dynamics on the optimization problem. In this case, the damped, single
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pendulum of fixed length is used (following the textbook of Baker and Gollub (1990),

see Figure 3-4). The motion of the pendulum is described by the equation:

d%6 dé .
ol Et—-f-sm@—o, (3.23)

where 6 is the displacement angle from vertical and ¢ is a damping coefficient. To
numerically implement this system, the angular velocity, w, is included as part of the
state and the system is discretized with a forward Euler timestep of time At. The

discrete-time state space realization is:

(w(t+At) ) _ ( (1- gAb) w(t) — At sin 6(2) ) 20
6(t + At) At w(t) + 6(1)

The tangent linear model, according to Equation (3.18), is:
dw(t + At 1—gAt —At cos 6(t dw(t
wt+a) ) _(1-q CRNEZCI E.
06(t + At) At 1 86(t)
The cost function, Equation (3.12), is rewritten for the pendulum:
T =[8(ts) = 0% (ts))* + [w(ty) — w(t))? (3.26)

where 8°% and w* are observations. We next consider the linear pendulum with stable
and unstable dynamics, then contrast the cost function shape with stable and unstable

nonlinear dynamics.

Linear, stable pendulum

Although the full equations of motion for the pendulum are nonlinear, a traditional

approach is to make the small-angle approximation. The dynamics of the pendulum are
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Figure 3-4: Diagram of the single pendulum. Large angles, 8, are allowed in the nonlinear
system. The pendulum has a massless rod of fixed length.

linearized around the state of zero displacement, 6 = 0.

( w(t + At) ) _ ( 1—qAt —At ) ( w(t) ) ’ (3.27)
6(t + At) At 1 6(t) ‘

Equation (3.27) is the discrete-time form of the continuous-time equation:

a0 de
252—+qa7+9—0, (3.28)

with the linear term of the Taylor series expansion, sin § = 6, replacing sine in the
nonlinear equation (3.23). The linearized pendulum dynamics should not be confused
with the dynamics of the tangent-linear model, although they are related. The linearized
pendulum of this section is always linearized around zero displacement, but the tangent

linear model is re-linearized around a changing nonlinear model trajectory.

To examine the shape of the cost function, consider an “identical twin” experi-
ment. The observation is generated by running the model with initial displacement of
—7/6 radians and zero velocity. Assuming a perfect model and observation, the shape
of the cost function is generated by changing the initial conditions and evaluating J.
One-dimensional slices of the cost function are made by varying the initial displace-

ment angle and by keeping the initial velocity fixed to zero. Regardless of the elapsed
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time between the initial conditions and the observation, a slice of the cost function is
a parabola (Figure 3-5,upper left panel). The cost function becomes less steep if the
elapsed time between initial and final time, t; — o, is increased. A flat cost function is
one where the model is relatively unconstrained. Thacker (1989) showed that the curva-
ture around the minimum gives the uncertainty of the estimate; a deeper “hole” yields
a more constrained estimate. In the pendulum example, the recovered initial conditions
become more uncertain with time because of the dissipation of information by damping.
The timescale of memory loss is roughly equivalent to 1/g, or 100 s, in this particular
example. The cost function tends to zero everywhere for time integrations longer than
the damping timescale. In summary, a linear model gives a paraboloidal cost function,
leading to a straightforward search for the minimum unless the memory of the initial
conditions is lost.

The linearized pendulum has an equilibrium point at rest, § = 0, w = 0. The
system is stable? if an arbitrary perturbation remains in a finite neighborhood of the
equilibrium for all time and approaches the equilibrium as time goes to infinity. For an
unforced, linear dynamical model, x(nAt) = A™ x(0), decompose the initial state into

the eigenmodes, g;, of A:
M
x(0) =Y i(0)gs, (3.29)
1=1

where a(t) is the time-variable projection of the state onto a particular eigenmode, 7. In
the present case, the dynamical model does not vary in time, and hence, the eigenmodes

are fixed. Therefore, the evolution of the state follows a simple modal form:
M
x(nAt) =Y Atoy(0)g;, (3.30)
i=1

where ); is the i-th eigenvalue. Division of the last two equations,

a‘i(t) \n
a0 A7 (3.31)

4Technically, this is the definition of asymptotic stability.
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Linear, stable pendulum Linear, unstable pendulum

1 -/
J : : JI [
L .~ 4=50s :: . S A t=055
—n/2 -n/3-1/6 0 w6 w/3 w2 -n/2-1/3-/6 0 w6 W3 w2
0 0
Nonlinear, stable pendulum Nonlinear, unstable pendulum
055,
: : : : A
 rAG : : 4/
o B A J

—n/2—m/3 /6 0 T6 W3 W2 n_2n/3-1/30 w3 2W3 T
0 0

Figure 3-5: Cost function with respect to the initial pendulum angle. A synthetic
observation was made from a model run with intial angle, § = —m/6. The time between
the initial state and the cost function evaluation is 0.5, 5, or 50 seconds. Upper left:
Linear, stable pendulum. Upper right. Linear, unstable pendulum Lower left: Nonlinear,
stable pendulum. Lower right: Nonlinear, unstable pendulum. Notice the wider scale
for 0 in the lower, right panel. The pendulum’s dynamical regimes are further explained
in the text.

87




gives a stability criterion. FEigenvalues with magnitude greater than one grow expo-
nentially with time. The discrete-time pendulum is stable for 0 < At < ¢q. Without
forcing, the pendulum returns to rest for all initial conditions. Due to stability, the cost
function magnitude decreases with increasing integration time; in other words, all model
trajectories eventually converge. The case where the model varies with time leads to
a slightly different interpretation of the stability criterion, and is discussed later in the

section on nonlinear pendulum dynamics.

Linear, unstable pendulum

To explore the impact of instability, consider changing the sign of 6 in the linearized

pendulum equation, which is equivalent to linearizing the inverted pendulum:

d?6 dé
a?2'+q-gt-—9—0. (3.32)

Physical justification is not sought for this change, but it is a simple way to render
the problem unstable. Eigenvalue analysis shows that one unstable mode is present. A
typical observation provides a strong constraint to the initial unstable mode, because
an error in that mode grows with time. Consequently, the cost function becomes in-
creasingly steep as the time between initial and final time is lengthened. As seen in
Figure 3-5 (upper right panel), the model initial conditions are well-constrained. The
shape of the cost function is still parabolic, so instability does not impede the search for
the minimum.

The two previous examples with the linear pendulum appear straightforward; how-
ever, special situations should be mentioned. Parabolic cost functions with varying
steepness in different directions result from ill-conditioned problems. As mentioned in
Section 3.2.4, searches may be inefficient in this case. An extreme example is that of
the banana-shaped valley, in which steepest-descent methods fail. Sums of independent
parabolic terms in a cost function may yield such complicated forms. Another problem

which may occur in linear models is the non-computability of the gradient. For the
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unstable model, gradients grow exponentially with time, and they may be too large
to be computed by numerical means. To summarize, linear dynamics, whether stable
or unstable, give parabolically-shaped cost functions. In most cases, the search for a

minimum of a paraboloid is efficient, but special circumstances do exist.

Nonlinear, stable pendulum

Stability of the nonlinear pendulum is determined by the linearized dynamics around
each point in phase space. A global measure of stability is no longer possible. Stability
of the tangent linear model is interpreted as the convergence of neighboring nonlinear
trajectories. For the pendulum, the tangent linear matrix has eigenvalues greater than
one when linearized about a state in the upper-half plane (6 < —7/2, 6 > 7/2, see
Figure 3-6). Gravity accelerates a horizontal pendulum most strongly; in the upper-
half plane, a pendulum perturbed towards the horizontal is more rapidly accelerated
downwards: an unstable configuration. Conversely, the lower-half plane is stable. Even
though the pendulum is not globally stable, the behavior of a stable, nonlinear model can
be examined by looking at the lower-half plane alone. Hereafter, the nonlinear pendulum
restricted to the lower-half plane is referred as the “nonlinear, stable pendulum.”

The cost function computed with the nonlinear, stable pendulum has four stationary
points, two local maxima and two local minima (Figure 3-5, lower left panel). The only
difference in the dynamics is a nonlinear term. Gradient search methods find the nearest
minimum, but no clear test exists to distinguish the global minimum from a local one.
This example shows that nonlinear models, even those that are stable, can create local
minima.

The tangent linear model well-approximates the nonlinear dynamics for a limited
amount of time, the nonlinear timescale (Gauthier 1992; Miller et al. 1994). For example,
consider the dynamics of the pendulum from the starting angle of (¢y) = 37/8, near
a local minimum of the cost function. The pendulum trajectory can be computed by
either the nonlinear model, or by the tangent linear model around the trajectory with

the correct initial angle, 6*() = —7/6. After fifteen seconds, the tangent linear model
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Phase Trajectory Largest Eigenvalue
T 1.01 —

Figure 3-6: Characteristics of the nonlinear pendulum. Left. The nonlinear pendulum
traces a damped quasi-periodic orbit in phase space. The pendulum was implemented
with a timestep of 0.01 s and a damping coefficient of 0.01 s™*. Right: The pendulum
is unstable in the upper half plane where the magnitude of the greatest eigenvalue, ||,
exceeds one. In the lower half plane, the pendulum is stable (nearly neutral) with the
largest eigenvalue just less than one.

makes a different prediction than the nonlinear model (Figure 3-7). The inaccuracy of
the tangent linear model has two causes. First, the pendulum frequency is a function of
amplitude, but the tangent linear model is linearized around a trajectory with a smaller
amplitude, and hence, an inaccurately-short period. Second, the tangent linear model
predicts divergence of the two pendulums, as seen by the growth® of the envelope of
A8, even though two nonlinear trajectories converge. In summary, the length of time
integration and the transient behavior of a system must be considered when assessing
the validity of the tangent linear model.

The preceeding section does not claim that the tangent linear model is incorrect.
Instead, the validity of the tangent linear model depends upon the size of the initial
perturbation. For a sufficiently small perturbation, the tangent linear model does well-
approximate the nonlinear dynamics; given the proper state to linearize about, the

tangent linear model is successful. For the pendulum, the angle after fifty seconds is a

5Perturbation growth occurs in the nonlinear pendulum despite asymptotic stability. The state
transition matrix is non-self-adjoint, and non-normal growth (Farrell 1989; Farrell and Moore 1993)
is possible. In this system, non-normal growth occurs because two pendulums with slightly different
initial conditions go out of phase, leading to large differences. Over long time periods, the decaying
amplitude of oscillations ceases the divergence of trajectories, and non-normal growth is seen to be
transient.
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Nonlinear Model vs. Tangent Linear Model

Figure 3-7: The difference of angle, Af, between two model trajectories as computed
by the nonlinear model (solid line) and the tangent linear model (dashed line). The two
nonlinear trajectories are started with initial angle (o) = —m/6 and 6(to) = 37/8. The
tangent linear model is linearized about the former trajectory.

nonlinear function of the initial angle (Figure 3-8). The tangent-linear model is valid
for an exceedingly-small region around 6(tp) = —n/6. In this small region, the cost

function, according to arguments in Section 3.3.1, is locally parabolic.

Nonlinear, unstable pendulum

As mentioned above, the nonlinear pendulum is stable in the lower-half plane, and
unstable in the upper-half plane. With initial conditions in the upper-half plane, the
pendulum trajectory is episodically-unstable. For simplicity, any pendulum that enters
the upper-half plane at any time is called a “nonlinear, unstable pendulum.” A slice of
the cost function contains many local minima with fifty seconds of elapsed time between
initial and final state (Figure 3-5, lower right panel). Instability of the model dynamics
is not a prerequisite for the emergence of local minima, but it exacerbates the problem.
Neighboring nonlinear trajectories diverge in time, and knowledge of the correct state for
linearization of the tangent linear model is lost with time. For the nonlinear, unstable
pendulum, gradient search only yields the global minimum for short time intervals or

with an excellent first guess.
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Figure 3-8: Pendulum angle at time ¢t; = 50 s as a function of initial angle. The
function is computed by the nonlinear dynamics (solid line), and by the tangent linear
model about the trajectory with initial angle, (o) = —7/6 (dashed line).

Nonlinear vs. linear pendulum

Figure 3-9: The form of the cost function of the pendulum with fifty seconds of elapsed
time between initial conditions and the observation. The cost function is computed with
both the nonlinear and linear model. Fifty seconds exceeds the nonlinear timescale, so
local minima appear in the cost function.




Nonlinear, chaotic pendulum

With the addition of forcing, the single pendulum is chaotic in certain parameter ranges
(see Appendix B for the equations of motion). Nonlinear, chaotic pendulums are a
subset of nonlinear, unstable systems. The short-time dynamical behavior of the two
classes of models are identical for our purposes. However, differences appear in the
long-time behavior. Gradients of nonlinear, unstable models tend to zero with damp-
ing. In contrast, gradients computed by nonlinear, chaotic models grow exponentially
for an indefinite amount of time despite damping. Therefore, sensitivity analysis with
long-time integrations of nonlinear, chaotic systems have two problems: the potential
non-computability of very large gradients, similar to unstable, linear models, and the

emergence of many local minima, as seen in many nonlinear models.

3.3.3 Models with thresholds

Nearly all numerical models have thresholds due to physical or numerical reasons. Nu-
merical programs necessarily include many switches, such as conditional if statements.
One ocean process that depends upon a threshold is convection. To examine the impact
of model thresholds on a cost function, consider a water column undergoing cooling at
the surface (Figure 3-10, left panel). The simplest, discrete representation of the vertical
stratification has two components, surface density, p1, and abyssal density, p. In a nu-
merical model, convection is typically implemented as two-step process. First, cooling

is applied to the surface.

pi(to +1) = pr(to) + @, (3.33)
pa(to + 1) = pa(to), (3.34)
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where Q is surface forcing. Second, if the surface density is greater than or equal to the

abyssal density, the ocean convects and subsequently mixes.

pr(to +2) = (p1(to + 1) + pa(to + 1)) /2
p2(to +2) = (pr(to + 1) + pa(to + 1)) /2

pi(to +1) 2 poto +1) — { (3.35)

where the arrow represents fulfillment of the conditional statement. If the column is

gravitationally stable, no convection happens.

pi(to +2) = pi{to +1)
pg(to + 2) = pz(to + 1)

pito+1) <palto+1) — (3.36)

Suppose an observation of the abyssal density is available at time ¢y + 2. Then, the

squared data-model misfit is:
J = [pa(to +2) = pass]™- (3.37)

The goal of the toy example is determine the correct amount of cooling in order to

Cost function with threshold

No
J | convection

Q

Figure 3-10: Left panel: Schematic of an oceanic water column with upper density, p1,
and abyssal density, p2. Cooling, @, is applied to the surface. Right panel: Data-model
misfit as a function of cooling. Two dynamical regimes are present: a non-convective
regime (left half), and a convective regime (right half), which greatly affect the cost
function form.




reproduce the observed abyssal density. The cost function value with respect to cooling
shows the impact of the threshold in the model dynamics (Figure 3-10, right panel).
Cooling affects the observational site only when convection is happening. Therefore, the
gradient in the non-convective regime is zero, and is very different than the gradient in
the convective regime.

This example illustrates that the gradient information is local, and may not accu-
rately predict the value of the cost function with a finite perturbation to the controls.
Sensitivity studies, where only one adjoint calculation is performed, get only a linear
picture of the model dynamics, and their applicability may be limited in a highly non-
linear model. In the minimization context, gradients are calculated at many different
points in phase space, yielding some overlying picture of the nonlinearity of the model
dynamics. Due to this fact, dynamical regime shifts are not expected to be a major

problem in finding a solution to the least-squares problem here.

Differentiability of model dynamics

The cost function presented above has one special point at the threshold between the
convective and non-convective states. -This forces one to consider the differentiability
of the model dynamics. Some investigators call any conditional statement nondifferen-
tiable, but the previous paragraph shows that such statements can usually be handled by
accurate linearization. With chaotic models, very large gradients have been attributed
to nondifferentiable dynamics (K6hl and Willebrand 2002). Formally, there is a distinc-
tion between unstable and nondifferentiable dynamics. Unstable (or chaotic) dynamics
are differentiable provided that the local neighborhood of examination is small enough.
Machine precision is an eventual limit, at which point an unstable model is indistinguish-
able from a nondifferentiable system within numerical accuracy. Here, we use the formal
definition of nondifferentiability. A numerical model statement is symbolically written,
Tows = g(Tin), Where g can be a nonlinear function, and z;, and z,, are continuous
scalars. If [8g/02:),, does not'exist, then the model is said to have a nondifferentiable

point at z;,.
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For the convective water column example, the gradient of the cost function with
respect to the cooling is examined through the chain of model steps. Following the ideas

of Marotzke et al. (1999), the cost function is written as:
j = f o] £1,2 o] [,0,1 o] X(to) - f(£1,2(£0,1(x(t0)))) = f(£1,2(x<t0) + bQ)) (338)

where f maps the final state onto a scalar, o is the composition operator, Ly, 1, TEpresents
the model step from t = t; to to, X(to) is the initial state, and b is the column vector,

[1, 0)7. The derivative of the cost function with respect to @ is determined by the

chain rule: _ _

a'] ! ! / 14 /

30 = F'(£32(x(to) +bQ)') = f'(L1,5(b)). (3.39)
The derivative of f with respect to the state, f’, is [0, 2(p(fo +2) — poss)], a well-defined
quantity for all reasonable values of abyssal density. Likewise, the column vector, b, is
well defined. However, the tangent-linear model, £, depends upon the physical regime

for linearization. For all convecting states, the tangent linear model is:

qz=(1ﬂ ”2). (3.40)
1/2 1/2

On the other hand, the tangent linear model for nonconvecting states is:

10
qﬂ=( ):1 (3.41)
0 1

Evaluation of the gradient is now a series of vector and matrix multiplications. There is
a particular amount of cooling, Qthreshold; which leads to a homogeneous water column
at t = 1, ie. pi(to+ 1) = pa(to + 1). For an infinitesimal perturbation of cooling,

Q = Qthreshold + €, the gradient of the cost function is:

1/2 1/2

[8j 1/2 1/2

50 ) 107 = palto +2) = pobs:  (3.42)

:i = [0 2(p2(t0 + 2) b pobs)] (
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Approaching the threshold from the nonconvecting side,

0

2] =0 2o+ D =) U Juor-o (3.43)

8Q
Because the two limits do not agree, the gradient does not exist at this point. Differ-
entiability has meaning in this discretized model because the density is expressed as a
continuous variable. On the other hand, the derivative of the state with respect to time,
dp/dt, or the vertical gradient of density, Op/0z, can not be well-defined in a continu-
ous sense. To summarize, the convection threshold represents a nondifferentiable point,
because the gradient does not formally exist.

Models with thresholds open the possibility that the gradient of the cost function
may not exist at a point. However, the probability of landing exactly on this threshold is
formally zero, because the forcing and the cost function are continuous scalars (Griewank
2000). In addition, the automatic adjoint code generator (TAF) still computes gradients
at the nondifferentiable point, which are equivalent to one-sided gradients. The adjoint
compiler handles conditional statements in the same way as other nonlinear statements
— with linearization around the full forward model trajectory. Despite the formal diffi-
culties with nondifferentiable points, they have not posed a problem in practice to this

date.

Summary of the influence of model dynamics on J

e Nonlinear model dynamics give rise to the possibility of local minima in the cost

function, and hence, multiple solutions.

e Local minima in the cost function are possible in nonlinear systems with locally-
unstable trajectories, or even in a stable nonlinear model with transient growth of

perturbations.

e A dynamical regime shift, such as those caused by model thresholds, is a situation

where the adjoint-computed gradient differs from a finite-difference approxima-
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tion. This is a problem for sensitivity studies, but is not a major deterrent for

minimization of a cost function.

3.4 Coarse-resolution optimization

This study begins with a coarse-resolution state estimation problem for two reasons: to
test the numerical machinery, and to potentially use the result as a new best guess for the
eddy-resolving calculation. State estimation with a coarse resolution ocean model avoids
many of the problems of an eddy-resolution estimate because the model is quasi-linear
and the control space is much smaller. Table 3.1 summarizes the differences in the 2° and
1/6° estimation problems. The large values of friction necessary to numerically stabilize
a coarse resolution model make the dynamics quasi-linear. Coarse resolution models have
been brought into consistency with data by a number of past investigators (Marotzke
and Wunsch 1993; Stammer et al. 2002). Computationally, the 2° estimation problem
consumes a relatively small amount of resources. Large-scale biases in the forcing and
regional model inadequacies can be accounted for in the coarse-resolution estimate.
Correction of the biases is much more computationally efficient at coarse resolution. In
summary, coarse resolution state estimation with the regional model takes a relatively

small effort, but the potential benefits for the fine resolution estimation problem are

great.

To implement the coarse-resolution regional estimate, all external forcings and bound-
ary conditions are taken from the ECCO global estimate with the same resolution. The
time period of the coarse-resolution estimate is identical to the fine-resolution one: June
1, 1992, to June 1, 1993. The cost function has the same form (Equation 2.1) as the
fine resolution problem, but the weights are changed. A coarse-resolution model does
not resolve motions at scales less than the grid spacing, and such information in the
observations must be considered noise. The Zang-Wunsch spectrum is used to predict

the energy at scales less than 400 km, the sub-gridscale and the diffusively-dominated
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20

1/6°

Horizontal Resolution
Grid Points

(167 — 218) km x 222 km
20 x 16 x 23 vertical levels

(14.2 — 18.2) km x 18.5 km
192 x 168 x 23 vertical levels

Time Step
Lap. Horiz. Viscosity
Lap. Horiz. Diffusivity

Vertical Viscosity
Vertical Diffusivity
Reynolds Number

Biharmonic Horiz. Vis./Diff.

3600 s =1 hr.
5x10* m?/s
1x10% m?/s

0

1x1072 m?/s
1x1075 m?/s

~1

900 s = 15 min.
0

0

2x101 m?/s
1x1073 m?/s
1x1075 m?/s

~ 25

State Vector
Control Vector
Model Input
Model Output

1.70 x 10* elements

9.11 x 10* elements

7.68 x 10° forcing elements
1.50 x 10® estimated elements

3.14 x 10° elements

5.49 x 108 elements

7.98 x 107 forcing elements
1.09 x 10 estimated elements

Processors
Computational Time
Search Iterations
Total Computer Time

1 processor

2 cpu hours/iteration
~ 40 iterations

~ 80 hours (2.3 days)

24-48 processors

400 cpu hours/iteration

~ 120 iterations

~ 50,000 hours (5.7 years)

Table 3.1: Coarse and fine resolution state estimation

range near the grid spacing. Below 400 km, the model wavenumber spectrum is too

steep; power decreases with wavenumber too rapidly due to the diffusive nature of the

model. To restate, the same observations are used in both estimates, but much larger

misfits are acceptable in the coarse-resolution problem. The coarse-resolution state esti-

mate here differs from the ECCO estimate for two primary reasons: the open boundary

formulation of the model, and the inclusion of new Subduction Experiment data in the

cost function. The result, detailed below, is a regional state estimate at coarse resolution

which is significantly improved for our particular study. The estimate is then used for

the fine resolution problem by a linear-interpolation onto a finer grid.

The method of Lagrange multipliers brings the ocean circulation within observational

uncertainty in fifty iterations of the forward and adjoint models (see left panel, Figure 3-

11). Therefore, the control parameters chosen in Chapter 2 are capable of controlling

and changing the interior ocean circulation. Furthermore, fifty iterations is extremely

efficient considering the control vector of 100,000 elements (i.e., Niterations << Neontrols)-

The successive updates of the controls further illustrates the efficiency of the optimiza-
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tion. The control variables quadratically converge upon the minimum of the cost func-
tion subject to the coarse resolution model (right panel, Figure 3-11); this is the theoret-
ical rate of convergence for the quasi-Newton method with a parabolically-shaped cost
function (Press et al. 1992). Indeed, when the two panels of Figure 3-11 are combined,
the shape of the cost function in control space is a parabola (Figure 3-12). This topology
is expected for a diffusive coarse-resolution ocean model. The solution for the control
variables is within the prior estimated range of uncertainty. It is not surprising that the

method works so well for a coarse resolution model, because it is a nearly-linear system.

Squared Model-Data Misfits: 2 Optimization Size of Controls |lu||2: 2 Optimization

: ' ! 10

} — Total

| — Moor Temp
4 = -+ Moor Vel
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-+ 8SH Mean
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(=]
T
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- Lev Salt
— SST

-
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Normalized Cost Function Contribution
Normalized Cost Function Contribution
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10 20 30 40 50 ) 10 20 30 40
Iteration lteration

Figure 3-11: Left panel: Normalized model-data misfit as a function of iteration of the
search method. A value of 1 (10°) is expected. Irregularities are caused by improvements
and changes in the numerical code; for example, the increase in the mooring temperature
misfit occurred when the data-model mapping was improved in the numerical code. Right
panel: The size of the control adjustments, ||u||?, for the same experiment.

3.4.1 Coarse-resolution misfits

The simulation with zero control adjustments has several large-scale hydrographic defi-
ciencies which require adjustments in the controls. Sea surface temperatures approach

35°C in the northern basin (30—40°N). A southward shift of the semi-permanent Azores
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Figure 3-12: Magnitude of the cost function with respect to the size of the control
adjustments. 55 cost function evaluations are plotted with “X”’s. A half-parabola
emerges, consistent with a quasi-linear model. Irregular points are present because
changes were made in the cost function weights.

High, with associated heat flux changes of 50 W/m?, cools summertime SST’s in this
region. Overly-warm sea surface temperatures are also associated with a weakened Ca-
naries Current in the simulation. The optimization shifts the open boundary southern
velocity from north to south in order to accommodate more cold water advection along
the coast. Abnormally warm SST is a ubiquitous problem of the ECCO state estimate®.
Another major deficiency of the simulation is the meridional slope of the winter mixed
layer base; the mixed-layer deepens to the south, reaching a depth of 220 m, at 22°N.
Observations and climatologies alike show that the mixed-layer shoals equatorward, a
crucial feature for subduction (Woods 1985; Marshall et al. 1993). The western bound-
ary fluxes too much heat away from the eastern subtropics between 20 — 30°N. The
optimization responds by both warming the western boundary at these latitudes, and
by decreasing the westward exit flow. The optimized estimate of mixed-layer depth then

shoals towards the south, and never reaches a depth greater then 170 m, in close ac-

6Here, we have used the original ECCO state estimate from the adjoint method, 1992-1997. Later
estimates do not have the same preponderance of overly-heated sea surface temperatures (D. Stammer,
pers. comm.) because of the addition of an explicit boundary layer scheme.
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cordance with observations. Analysis of the individual misfit terms in the cost function

further substantiates the large-scale deficiencies of the model.

Mooring misfit: 2°

Estimated temperature at the mooring sites reflects gradual cooling of the sea surface
and subsequent deepening of the mixed-layer in winter, as observed. Simulated (no data
constraint) temperature is deficient in many ways: an overly-deep mixed-layer, mistimed
winter onset, and a too-weak seasonal cycle. The estimate adjusts the large-scale heat
budget of the ocean ocean to improve the characteristics of the seasonal cycle. Mooring
temperature is shown to be controllable in this study; upper ocean measurements are
used which are used to directly estimate changes in surface forcing and initial conditions.
Deep hydrographic measurements may not be controllable because of the long times
needed for surface signals to propagate to the deep ocean. This question is open for

future research.

TOPEX/POSEIDON misfit: 2°

TOPEX/POSEIDON satellite altimetry is unique in this study in that the observational
uncertainty rivals the dynamical signal. For example, the background variability in this
region approaches 10—20 ¢ but the noise is around 5 em. For this reason, the maximum
misfit of the model is bounded at a fairly small value relative to the other data types.
When considering only the large-scale observational signal, 58% of the SSH variance
is noise because it is at wavelengths less than 400 km. The original SSH anomaly
misfit is 30% greater than the expected value, but changes in the large-scale structure
bring the estimated surface height field into consistency. The SSH mean field from
TOPEX/POSEIDON is also used. It is also a relatively weak constraint on the model
dynamics because of the uncertainty of the geoid at high wavenumbers. The general

circulation model is consistent with the observed SSH mean field for all control variable

values used here.
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Climatological misfits: 2°

Ocean climatologies are difficult to fit, even within their larger uncertainty. For exam-
ple, the state estimate differs from Levitus climatological temperatures in the eastern
boundary current region off of Africa and the Iberian Peninsula. Iterations of the for-
ward/adjoint model bring the estimate closer to the Levitus climatology, but not into
complete statistical consistency. This is not because the climatology has been down-
weighted too much; numerically, its contribution to the cost function is the larger than
all other terms. Inconsistency between the Levitus climatology and other datasets is
not implied, as the a priori tests of Section 2.2.3 dismiss such a possibility. The last
possibility is that the Levitus climatology is inconsistent with the equations of motion.
Because it is a long-term, time-mean statistical average of various data sources, the
latter explanation seems most likely.

A strict comparison of the modeled temperature and Reynolds SST data reveals
inadequacies in the model dynamics. Surface layers of the model are too warm in
the summer because the seasonal mixed-layer is not deep enough (Figure 3-13). The
KPP boundary layer model parameterizes wind-stirred deepening of the mixed-layer,
but does not flux enough heat downwards. Sumiertime errors are evident in the biased
histogram of the model-data misfit. For statistical rigor, Gaussian errors are assumed,
but inadequacy of the model dynamics breaks this posterior test. The standard deviation
of the SST misfit is also slightly larger than the expected value, which is measured by

the cost function. This paragraph is a call for model improvement.

3.4.2 Coarse-resolution control adjustments

Which controls are most important to bring the model into consistency with the ob-
servational signal? The gradient of the cost function with respect to the controls gives
a quantitative answer. After nondimensionalizing each gradient by its data type and
depth, the initial temperature and open boundary conditions are most important over
the first year of integration. The memory of initial conditions extends well beyond

one year — both forward model studies (Griffies and Bryan 1997) and adjoint studies
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Figure 3-13: Top panel: Standard deviation of SST misfit as a function of month. Lower
panel: Histogram (blue) of SST misfit, and the assumed prior error statistics (red line).

(Bugnion 2001) have shown a memory of at least ten years in the upper ocean.
Previous state estimation studies have seen the emergence of spurious small-scale

noise in the control adjustments (Zhang and Marotzke 1999), but this is not a problem

with the formulation here. The open boundary temperature and normal velocity fields

play a similarly important role in controlling the ocean circulation.

Control Statistics

To satisfy a priori assumptions in the cost function, the magnitude of the control ad-
justments must be within an expected range. For uncorrelated control adjustments with
a Gaussian distribution and a standard deviation of one, the squared controls should
follow a chi-squared (x?) distribution with one degree of freedom (Wunsch 1996). The
control adjustments for the eddy-resolving state estimate follow a chi-squared distribu-
tion, but are more strongly clustered around zero (Figure 3-14). This suggests that the

controls are correlated, which is reasonable based on knowledge of typical geophysical
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Occurence

Figure 3-14: Distribution of squared control adjustments. The binned controls (blue)
are compared to the prior error statistics, a chi-squared distribution with one degree of
freedom (black line). The controls are correlated because the binned distribution is more
strongly clustered around zero. Based on the knowledge of typical geophysical fields,
the control variables should not be completely independent, and the posterior test seems
acceptable.

fields. Atmospheric forcing fields, for example, should be correlated at large length-
scales primarily due to the larger Rossby radius of deformation in the atmosphere. In
conclusion, this posterior test successfully shows that the control adjustments have a

reasonable size.

3.5 Fine-resolution optimization

Spatial resolution determines the degree of nonlinearity in many oceanographic models
because frictional coefficients can be made smaller with higher resolution. Therefore,
high-resolution simulations typically have a more-realistic Reynolds number and more-

nonlinear dynamics. The arguments of Section 3.3 show that multiple solutions to the
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least-squares problem are more likely to exist in this case. Multiple minima were seen
in small-dimensional geophysical systems, like that of Ghil et al. (1991). In a quasi-
geostrophic, three-layer double gyre model, the resolution directly affected the shape of
the cost function (Kéhl and Willebrand (2002), Figure 3-15). Coarse resolution models,
which are nearly linear due to high viscosity, produced cost functions with a parabolic
shape, but the high-resolution counterpart was irregularly shaped. Studies with geo-
physical turbulence (Tanguay et al. 1995) showed that small scales, where frequencies
are highest, are likely to be most nonlinear in geophysical phenomena. Dynamics of
different ocean regions also have distinet levels of nonlinearity. Assimilation of Gulf
Stream eddies was successful over a three month window, but the optimization diverged -
for longer times (Schréter et al. 1993), which the authors prescribed to the model becom-
ing “more nonlinear” with time. Prior to this thesis, the prospects for state estimation

in the eastern subtropical gyre were unknown.

3.5.1 Chaos in geophysical systems

The quasi-geostrophic basin model of Lea et al. (2000), and the primitive equation
~ model of Kohl and Willebrand (2003) were nonlinear and chaotic. Long time integra-
tions reveal the differences between nonchaotic and chaotic nonlinear models. Nonlinear
models generally lose sensitivity to initial conditions with increasing tiine, but chaotic
models are exceptions. In addition to many local minima, cost functions from chaotic
models behave like a discontinuous function (a Weierstrass function, McShane (1989)).
Gradients do not give any useful information for a finite-sized neighborhood of phase
space. Sensitivity of the initial conditions of a chaotic model remains indeﬁniﬁely, but
the conditions themselves are unrecoverable. For a successful optimization, long time

integrations of chaotic models must be avoided.

Chaos in the Northeast Atlantic regional model?

A prerequisite for nonlinear chaos, as defined by Lea et al. (2000), is a model with insta-

bility. The Subduction Experiment region has relatively low levels of eddy energy and
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Figure 3-15: Cost functions from a fine and coarse-resolution quasi-geostrophic double
gyre model with three levels. The cost function is the SSH misfit as a function of changes
in the wind stress. The inference is that the 1/6° model is highly nonlinear. From Kohl
and Willebrand (2002).
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no western boundary currents; both imply a more linear dynamical regime. The general
circulation model of this thesis is nonlinear and episodically unstable, as seen in two
time integrations of the GCM with a small perturbation (Figure 3-16). A slight change
in the control parameters leads to quasi-linear divergence of the model trajectories in
phase space. 50-day episodes of exponential divergence suggest weak instability. Baro-
clinic instability is an intrinsically unstable element of ocean models which can explain
the results here. With the weak nonlinearity of the Subduction Experiment region, it is

unknown if the shape of the cost function with the eddy-resolving model is smooth or

irregular.

x10™ Divergence of Phass Space Trajectories

A N " " - N N
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Figure 3-16: Two nonlinear integrations of the Subduction Experiment with a small
perturbation to the control variables. The divergence between the two trajectories is
defined as the sum of the squared difference in sea surface height, S-*¥(SSH; — SSH,)2.
Exponential divergence occurs in short episodes, but the overall character is quasi-linear.

A direct check for the presence of chaotic dynamics can be done through the adjoint
model. The adjoint model calculates the sensitivity to initial conditions; chaotic models
have sensitivity which grows exponentially with increasing integration time. The time
evolution of the Lagrange multipliers gives the time-evolution of the sensitivity. As

shown in Section 3.2.5 and Appendix B, the Lagrange multipliers represent the sensi-
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tivity to the model state at that particular time. Hence, the Lagrange multipliers three
months before the final time represent the sensitivity of the initial conditions of a three
month integration. The adjoint model has the same stability characteristics as the tan-
gent linear model because the eigenvalues of a matrix and its transpose are the same.
The reverse-time evolution of the Lagrange multipliers reﬁecté this symmetry. The time
evolution of the Lagrange multipliers of the regional GCM do not grow exponentially
with time, instead they saturate in less than a'year (Figure 3-17). The adjoint model
is therefore stable over long time integrations and the dynamics of the system are not
chaotic. For reference, the Lagrange multipliers of the episodically-unstable nonlinear
pendulum have the same behavior (Figure 3-18). Based on this evidence, chaotic dy-
namics are not present in the Subduction Experiment model and the gradients of the
cost function are calculable for long time integrations.

As previously mentioned, gradients computed from chaotic ocean models (Lea et al.
2000; K6hl and Willebrand 2003) had limited utility because of the nearly-discontinuous
form of the cost function. Is the gradient, as computed by the eddy-resolving adjoint
model of this study, relevant for finite perturbations of the control vector? This is a
necessary condition for the gradient search method to succeed. The first iteration of the

optimization can be used as a gradient check. By a Taylor series expansion:
Ju) — Ju®) = VJNT (u-u®). (3.44)

The approximation potentially fails due to the parabolic and higher order terms in the
cost function (Equation (3.8)), and also due to discontinuities in the neighborhood of
u©. Also, use of a very small perturbation will be inaccurate due to cancellation errors
and loss of significant digits (Griewank 2000). Using the first gradient, first cost function
value, and a small perturbation of the controls, the expected cost function is calculable
by (3.44). Then, the new controls are used to complete an integration of the nonlinear
model and check the correspondence. Here, errors are usually 1%, although occasional
point error values up to 50% occur. They are attributable primarily to the curvature

of the cost function. Errors of this magnitude are acceptable, as the purpose of the
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Figure 3-17: The evolution of the Lagrange multipliers (adjoint state) of the GCM

with reversed time. The Lagrange multipliers are interpreted as the sensitivity of the
initial conditions to a time integration of specific length. Both the maximum Lagrange

mulitplier, ||g(t)||eo, (s0lid line) and average magnitude of the Lagrange multipliers,

||2]l2, (dashed line) are plotted.

Nonlinear pendulum: Lagrange multipliers
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Figure 3-18: The evolution of the Lagrange multipliers of the nonlinear pendulum with
reversed time. Here, the maximum Lagrange multiplier, ||(t)||co, is plotted. The time
evolution is not as steady as the GCM because no spatial averaging is possible with the

nonlinear pendulum.




gradient is simply to point downhill. Exact gradient values are not necessary as long
as a minimum is ultimately found. A successful gradient check shows that the eddy-
resolving model of this region avoids some of the problems of previous chaotic models.

Another check of the gradient information is qualitative: does it look physically
reasonable? In most cases, the gradients carry the signature of an adjoint Rossby wave
traveling towards the eastern half of the basin. In addition, baroclinically-unstable
bands appear to be more important, as inferred by Galanti and Tziperman (2002). This
argument gives faith that the numerical machinery is accurately implemented.

In summary, the gradients calculated from the regional GCM contain useful informa-
tion, but the cost function may have more than one stationary point. Therefore, local
minima in the cost function still represent a concern which can slow or stop the conver-
gence to an adequate solution to the least-squares problem. Because gradient descent
finds the nearest minimum, the first-guess set